Spin casting

Last updated

Spin casting, also known as centrifugal rubber mold casting (CRMC), is a method of utilizing inertia to produce castings from a rubber mold. Typically, a disc-shaped mold is spun along its central axis at a set speed. The casting material, usually molten metal or liquid thermoset plastic, is then poured in through an opening at the top-center of the mold. The filled mold then continues to spin as the metal (or thermoset plastic) solidifies.

Contents

General description

The two defining characteristics of spin casting are semi-permanent (non-expendable) rubber molds, and the use of inertial force. These make the process relatively unique compared to machined die-based and expendable mold casting methods. These qualities enable operators to design original models using media such as polymer clay that has an easy to carve Plasticine like consistency that when heated using a conventional oven, it hardens enough to hold up under the vulcanization process, producing an original mold where models are then cast for the production mold. These qualities also encourage operators to use casting materials specially formulated for low melting points and viscosities. Most spin casting is done with pewter and zinc alloys or thermoset plastics.

Silicone molds

The spin casting process typically uses vulcanized silicone or organic rubber as the mold-making substrate. Vulcanization is an integral step that occurs halfway through the mold-making process. Prior to vulcanization, the mold rubber is a soft and malleable solid-like fluid, in many ways very similar to Silly Putty. Because of the clay-like nature at this stage, the mold is easily cut or shaped to accommodate irregular models. Vulcanization serves two purposes: establishing the negative space inside the mold as well as hardening the rubber so it will remain strong and rigid during casting.

After vulcanization, before it is usable, the mold must undergo gating and venting. This involves carving channels to ensure proper air and material flow during the casting process. Gating and venting is typically done by hand using a sharp knife or scalpel and varies in time depending upon the complexity of the mold. The final product is a cured rubber mold, which can withstand anywhere from hundreds to over a thousand casting cycles before replacement is needed.

Casting materials

Metal

Generally, the casting materials used for competing processes like metal die casting and injection molding are similar, but not suitable for spin casting. For example, a typical zinc die-casting alloy such as Zamak 3 can be used but will solidify too rapidly from a molten state when cast with centrifugal force. This typically results in incomplete filling of the mold as well as a rough, porous finish, called orange peel. Zamak 2, of a slightly different composition, was originally developed as a gravity-cast alloy with greater finished strength but was found to work well with spin-casting. Its extra copper content encourages the eutectic behaviour and gives a lower freezing point. It has become known as 'Kirksite' and has given rise to a range of dedicated spin-casting alloys, some with additional components, such as magnesium, to control the surface finish.

To ensure replicable casting cycles of accurate reproductions with a high quality finish, the spin casting process requires casting materials with the following qualities, for the following reasons:

Plastic

Aside from the aforementioned metal alloys, thermoset resins and plastics work well with spin casting as they can be introduced as liquids and will set or solidify while the mold spins. In general, spin casting encourages the use of casting materials that are liquid upon introduction to the mold and solidify at a slow, uniform rate during the spin cycle.

Equipment

A 24" front-loading spin caster Spincasting-caster.gif
A 24" front-loading spin caster

Spin caster

During the casting process, the finished mold spins along its central axis for anywhere from 30 seconds to several minutes depending upon the chosen casting material. Internally, a spin casting machine or spin caster consists of a motor and pressure clamping system, which holds and positions the mold properly while it spins at a steady rate. These components are placed inside of a machine body, which shields against flashing of molten metal or liquid plastic that is inadvertently ejected from the mold during the spinning process. Without the proper containment, hot melted flashing can be a serious hazard to nearby persons.

Commercial spin casting machines are available in two different types, front-loading and top-loading. Owing to the weight and bulkiness of spin casting molds, front loading machines tend to offer several advantages regarding ease of use and time savings. Rubber molds can become quite heavy, especially at larger diameters and when casting metal. Because loading and unloading the caster is performed by hand, it is easiest and less fatiguing to manipulate the mold at waist level in one fluid motion as allowed by a front-loading spin caster. This is important in production spin casting, to maximize the number of casting cycles per hour.

Top loading machines tend to be cheaper and theoretically have less of a restriction on maximum mold thickness.

Vulcanizer

12" and 18" vulcanizing presses Spincasting-vulcan.gif
12" and 18" vulcanizing presses

Vulcanization is a necessary step to prepare the uncured silicone mold for spin casting. Under controlled heat and pressure the silicone slowly cures to a heat-resistant, flexible, permanent mold. The vulcanizing press or vulcanizer uniformly compresses the mold while exposing it to heat for several hours. The vulcanizer consists of a pair of parallel heated platens mounted on a hydraulic press. Smaller or home-made vulcanizers may compress the mold via screws or a heavy duty clamp instead of hydraulic pressure. Some spin casting operations choose to forgo running their own vulcanizer and procure molds from a supplier.

Melting furnace

An electric melting furnace Spincasting-furnace.gif
An electric melting furnace

A melting furnace is necessary only when spin casting metal. The metal must be molten prior to introduction into the mold. It is necessary for a spin casting furnace to have a temperature controller, as there is an optimal range for each metal. For example, a particular zinc alloy is typically cast between 413 and 427 °C (775-800 °F), whereas it actually melts much lower around 260 °C (500 °F). If the metal is introduced to the mold at a higher temperature (in this case, above 427 °C or 800 °F), it will wear the silicone prematurely, shortening the mold life. If the metal is introduced at significantly lower temperatures (below 775 °F), its solidification time will similarly be shortened resulting in incomplete or low quality castings. Spin casting metal requires a furnace with fine temperature control, and knowledge of proper casting temperature.

Similar processes

Spin casting is a favored method for fabricating items in the specified materials – low temperature metals and thermoset plastics. Compared to the two main competing processes, injection molding and (zinc) die-casting, spin casting has significant advantages in terms of startup cost and ease of use. In some cases, spin casting can also be an alternative to sand casting, plaster mold casting or investment casting. These three techniques (sand, plaster and lost wax) are not directly comparable as each utilizes an expendable mold.

Comparison of spin casting to various other casting processes [1]
Spin castingDie castingInjection molding
Mold materialVulcanized rubberMachined tool steelMachined aluminum, brass or tool steel
Casting materialZinc, tin, lead, pewter, thermoset plastics, pattern waxZinc, aluminum, magnesiumMost thermoplastics
Average cost of tooling (USD)$7,500–20,000$50,000–2,500,000$25,000–150,000
Ability to make design changesEasiestVery difficultVery difficult
Typical initial lead time4 hours to 2 days12 to 24 weeks12 to 24 weeks
Casting tolerancesVery closeClosestClosest
Piece priceVery lowLowestLowest
Size range0.5–12 in (13–305 mm)0.5–24 in (13–610 mm)0.5–24 in (13–610 mm)

The remarkable disparity in tooling cost and lead time is a result of the expensive and time-consuming machining required to produce the precision metal molds (dies) used with die-casting and plastic injection molding. The precision tooling and resilient nature of the machined metal die yields an extremely long-lasting mold and slight improvements to casting tolerances. Thermoplastics and die casting metal alloys are in wider use than their specialized spin casting analogs, and are typically cheaper.

Applications

Spin casting is commonly used for the manufacture of the following types of items:

Because of low start up costs and ease of use, spin casting is available to individuals and businesses unable to make the deep investments required by die casting, injection molding or similar processes. These users include smaller business and design houses that would normally contract their work to production "job" shops, as well as hobbyists producing unique items for personal enjoyment. Thus, spin casting is accessible to a broader range of applications than competing technologies.

See also

Related Research Articles

<span class="mw-page-title-main">Metal casting</span> Pouring liquid metal into a mold

In metalworking and jewelry making, casting is a process in which a liquid metal is delivered into a mold that contains a negative impression of the intended shape. The metal is poured into the mold through a hollow channel called a sprue. The metal and mold are then cooled, and the metal part is extracted. Casting is most often used for making complex shapes that would be difficult or uneconomical to make by other methods.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

<span class="mw-page-title-main">Injection moulding</span> Manufacturing process for producing parts by injecting molten material into a mould, or mold

Injection moulding is a manufacturing process for producing parts by injecting molten material into a mould, or mold. Injection moulding can be performed with a host of materials mainly including metals, glasses, elastomers, confections, and most commonly thermoplastic and thermosetting polymers. Material for the part is fed into a heated barrel, mixed, and injected into a mould cavity, where it cools and hardens to the configuration of the cavity. After a product is designed, usually by an industrial designer or an engineer, moulds are made by a mould-maker from metal, usually either steel or aluminium, and precision-machined to form the features of the desired part. Injection moulding is widely used for manufacturing a variety of parts, from the smallest components to entire body panels of cars. Advances in 3D printing technology, using photopolymers that do not melt during the injection moulding of some lower-temperature thermoplastics, can be used for some simple injection moulds.

<span class="mw-page-title-main">Die casting</span> Metal casting process

Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot- or cold-chamber machine is used.

<span class="mw-page-title-main">Compression molding</span> Method of molding

Compression molding is a method of molding in which the molding material, generally preheated, is first placed in an open, heated mold cavity. The mold is closed with a top force or plug member, pressure is applied to force the material into contact with all mold areas, while heat and pressure are maintained until the molding material has cured; this process is known as compression molding method and in case of rubber it is also known as 'Vulcanisation'. The process employs thermosetting resins in a partially cured stage, either in the form of granules, putty-like masses, or preforms.

<span class="mw-page-title-main">Rotational molding</span> Making hollow plastic objects in a heated mold

Rotational molding involves a heated mold which is filled with a charge or shot weight of the material. It is then slowly rotated, causing the softened material to disperse and stick to the walls of the mold forming a hollow part. In order to form an even thickness throughout the part, the mold rotates at all times during the heating phase, and then continues to rotate during the cooling phase to avoid sagging or deformation. The process was applied to plastics in the 1950s but in the early years was little used because it was a slow process restricted to a small number of plastics. Over time, improvements in process control and developments with plastic powders have resulted in increased use.

<span class="mw-page-title-main">Metal injection molding</span> Metalworking process in which finely-powdered metal is mixed with binder material

Metal injection molding (MIM) is a metalworking process in which finely-powdered metal is mixed with binder material to create a "feedstock" that is then shaped and solidified using injection molding. Metal injection molding combines the most useful characteristics of powder metallurgy and plastic injection molding to facilitate the production of small, complex-shaped metal components with outstanding mechanical properties. The molding process allows high volume, complex parts to be shaped in a single step. After molding, the part undergoes conditioning operations to remove the binder (debinding) and densify the powders. Finished products are small components used in many industries and applications.

<span class="mw-page-title-main">Foundry</span> Factory that produces metal castings

A foundry is a factory that produces metal castings. Metals are cast into shapes by melting them into a liquid, pouring the metal into a mold, and removing the mold material after the metal has solidified as it cools. The most common metals processed are aluminum and cast iron. However, other metals, such as bronze, brass, steel, magnesium, and zinc, are also used to produce castings in foundries. In this process, parts of desired shapes and sizes can be formed.

<span class="mw-page-title-main">Continuous casting</span>

Continuous casting, also called strand casting, is the process whereby molten metal is solidified into a "semifinished" billet, bloom, or slab for subsequent rolling in the finishing mills. Prior to the introduction of continuous casting in the 1950s, steel was poured into stationary molds to form ingots. Since then, "continuous casting" has evolved to achieve improved yield, quality, productivity and cost efficiency. It allows lower-cost production of metal sections with better quality, due to the inherently lower costs of continuous, standardised production of a product, as well as providing increased control over the process through automation. This process is used most frequently to cast steel. Aluminium and copper are also continuously cast.

Fusible core injection molding, also known as lost core injection molding, is a specialized plastic injection molding process used to mold internal cavities or undercuts that are not possible to mold with demoldable cores. Strictly speaking the term "fusible core injection molding" refers to the use of a fusible alloy as the core material; when the core material is made from a soluble plastic the process is known as soluble core injection molding. This process is often used for automotive parts, such as intake manifolds and brake housings, however it is also used for aerospace parts, plumbing parts, bicycle wheels, and footwear.

Injection molding of liquid silicone rubber (LSR) is a process to produce pliable, durable parts in high volume.

Thermoplastic vulcanizates (TPV) are dynamically vulcanized alloys consisting mostly of fully cured EPDM rubber particles encapsulated in a polypropylene (PP) matrix. They are part of the thermoplastic elastomer (TPE) family of polymers but are closest in elastomeric properties to EPDM thermoset rubber, combining the characteristics of vulcanized rubber with the processing properties of thermoplastics. There are almost 100 grades in the S portfolio that are used globally in the automotive, household appliance, electrical, construction, and healthcare markets. The name Santoprene was trademarked in 1977 by Monsanto, and the trademark is now owned by Celanese. Similar material is available from Elastron and others.

Permanent mold casting is a metal casting process that employs reusable molds, usually made from metal. The most common process uses gravity to fill the mold, however gas pressure or a vacuum are also used. A variation on the typical gravity casting process, called slush casting, produces hollow castings. Common casting metals are aluminium, magnesium, and copper alloys. Other materials include tin, zinc, and lead alloys and iron and steel are also cast in graphite molds.

Ceramic mold casting, also known ambiguously as ceramic molding, is a group of metal casting processes that use ceramics as the mold material. It is a combination of plaster mold casting and investment casting. There are two types of ceramic mold casting: the Shaw process and the Unicast process.

<span class="mw-page-title-main">Casting</span> Manufacturing process in which a liquid is poured into a mold to solidify

Casting is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify. The solidified part is also known as a casting, which is ejected or broken out of the mold to complete the process. Casting materials are usually metals or various time setting materials that cure after mixing two or more components together; examples are epoxy, concrete, plaster and clay. Casting is most often used for making complex shapes that would be otherwise difficult or uneconomical to make by other methods. Heavy equipment like machine tool beds, ships' propellers, etc. can be cast easily in the required size, rather than fabricating by joining several small pieces. Casting is a 7,000-year-old process. The oldest surviving casting is a copper frog from 3200 BC.

Shell molding, also known as shell-mold casting, is an expendable mold casting process that uses resin covered sand to form the mold. As compared to sand casting, this process has better dimensional accuracy, a higher productivity rate, and lower labour requirements. It is used for small to medium parts that require high precision. Shell molding was developed as a manufacturing process during the mid-20th century in Germany. It was invented by German engineer Johannes Croning. Shell mold casting is a metal casting process similar to sand casting, in that molten metal is poured into an expendable mold. However, in shell mold casting, the mold is a thin-walled shell created from applying a sand-resin mixture around a pattern. The pattern, a metal piece in the shape of the desired part, is reused to form multiple shell molds. A reusable pattern allows for higher production rates, while the disposable molds enable complex geometries to be cast. Shell mold casting requires the use of a metal pattern, oven, sand-resin mixture, dump box, and molten metal.

Resin casting is a method of plastic casting where a mold is filled with a liquid synthetic resin, which then hardens. It is primarily used for small-scale production like industrial prototypes and dentistry. It can be done by amateur hobbyists with little initial investment, and is used in the production of collectible toys, models and figures, as well as small-scale jewellery production.

<span class="mw-page-title-main">Centrifugal casting (industrial)</span> Casting technique that is typically used to cast thin-walled cylinders

Centrifugal casting or rotocasting is a casting technique that is typically used to cast thin-walled cylinders. It is typically used to cast materials such as metals, glass, and concrete. A high quality is attainable by control of metallurgy and crystal structure. Unlike most other casting techniques, centrifugal casting is chiefly used to manufacture rotationally symmetric stock materials in standard sizes for further machining, rather than shaped parts tailored to a particular end-use.

RTV silicone is a type of silicone rubber that cures at room temperature. It is available as a one-component product, or mixed from two components. Manufacturers provide it in a range of hardnesses from very soft to medium—usually from 15 to 40 Shore A. RTV silicones can be cured with a catalyst consisting of either platinum or a tin compound such as dibutyltin dilaurate. Applications include low-temperature over-molding, making molds for reproducing, and lens applications for some optically clear grades. It is also used widely in the automotive industry as an adhesive and sealant, for example to create gaskets in-place.

Cast urethanes are similar to injection molding. During the process of injection molding, a hard tool is created. The hard tool, made of an A side and a B side, forms a void within and that void is injected with plastics ranging in material property, durability, and consistency. Plastic cups, dishware, and toys are most commonly made using the process of injection molding because they are common consumer items that need to be produced on a mass scale, and injection molding is designed for mass production.

References

  1. Compare Processes , retrieved 2014-09-25.