Atomic ratio

Last updated

The atomic ratio is a measure of the ratio of atoms of one kind (i) to another kind (j). A closely related concept is the atomic percent (or at.%), which gives the percentage of one kind of atom relative to the total number of atoms. [1] The molecular equivalents of these concepts are the molar fraction, or molar percent .

Ratio relationship between two numbers of the same kind

In mathematics, a ratio indicates how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six. Similarly, the ratio of lemons to oranges is 6∶8 and the ratio of oranges to the total amount of fruit is 8∶14.

Molecule Electrically neutral entity consisting of more than one atom (n > 1); rigorously, a molecule, in which n > 1 must correspond to a depression on the potential energy surface that is deep enough to confine at least one vibrational state

A molecule is an electrically neutral group of two or more atoms held together by chemical bonds. Molecules are distinguished from ions by their lack of electrical charge.In the kinetic theory of gases, the term molecule is often used for any gaseous particle regardless of its composition. According to this definition, noble gas atoms are considered molecules as they are monatomic molecules.

Contents

Atoms

Mathematically, the atomic percent is

%

where Ni are the number of atoms of interest and Ntot are the total number of atoms, while the atomic ratio is

For example, the atomic percent of hydrogen in water (H2O) is at.%H2O = 2/3 x 100 ≈ 66.67%, while the atomic ratio of hydrogen to oxygen is AH:O = 2:1.

Hydrogen Chemical element with atomic number 1

Hydrogen is the chemical element with the symbol H and atomic number 1. With a standard atomic weight of 1.008, hydrogen is the lightest element in the periodic table. Hydrogen is the most abundant chemical substance in the Universe, constituting roughly 75% of all baryonic mass. Non-remnant stars are mainly composed of hydrogen in the plasma state. The most common isotope of hydrogen, termed protium, has one proton and no neutrons.

Water Chemical compound with formula H2O

Water is a transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere, and the fluids of most living organisms. It is vital for all known forms of life, even though it provides no calories or organic nutrients. Its chemical formula is H2O, meaning that each of its molecules contains one oxygen and two hydrogen atoms, connected by covalent bonds. Water is the name of the liquid state of H2O at standard ambient temperature and pressure. It forms precipitation in the form of rain and aerosols in the form of fog. Clouds are formed from suspended droplets of water and ice, its solid state. When finely divided, crystalline ice may precipitate in the form of snow. The gaseous state of water is steam or water vapor. Water moves continually through the water cycle of evaporation, transpiration (evapotranspiration), condensation, precipitation, and runoff, usually reaching the sea.

Isotopes

Another application is in radiochemistry, where this may refer to isotopic ratios or isotopic abundances . Mathematically, the isotopic abundance is

Radiochemistry is the chemistry of radioactive materials, where radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes. Much of radiochemistry deals with the use of radioactivity to study ordinary chemical reactions. This is very different from radiation chemistry where the radiation levels are kept too low to influence the chemistry.

where Ni are the number of atoms of the isotope of interest and Ntot is the total number of atoms, while the atomic ratio is

For example, the isotopic ratio of deuterium (D) to hydrogen (H) in heavy water is roughly D:H = 1:7000 (corresponding to an isotopic abundance of 0.00014%).

Deuterium Isotope of hydrogen with 1 neutron

Deuterium is one of two stable isotopes of hydrogen. The nucleus of a deuterium atom, called a deuteron, contains one proton and one neutron, whereas the far more common protium has no neutron in the nucleus. Deuterium has a natural abundance in Earth's oceans of about one atom in 6420 of hydrogen. Thus deuterium accounts for approximately 0.02% of all the naturally occurring hydrogen in the oceans, while protium accounts for more than 99.98%. The abundance of deuterium changes slightly from one kind of natural water to another.

Heavy water is a form of water that contains a larger than normal amount of the hydrogen isotope deuterium, rather than the common hydrogen-1 isotope that makes up most of the hydrogen in normal water. The presence of deuterium gives the water different nuclear properties, and the increase of mass gives it slightly different physical and chemical properties when compared to normal water. It can be used to create ice and snow at higher temperatures since its melting point is 3.82 C.

Doping in laser physics

In laser physics however, the atomic ratio may refer to the doping ratio or the doping fraction.

Ytterbium Chemical element with atomic number 70

Ytterbium is a chemical element with the symbol Yb and atomic number 70. It is the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. However, like the other lanthanides, its most common oxidation state is +3, as in its oxide, halides, and other compounds. In aqueous solution, like compounds of other late lanthanides, soluble ytterbium compounds form complexes with nine water molecules. Because of its closed-shell electron configuration, its density and melting and boiling points differ significantly from those of most other lanthanides.

Yttrium aluminum garnet (YAG, Y3Al5O12) is a synthetic crystalline material of the garnet group. It is a cubic yttrium aluminum oxide phase, with other examples being YAlO3 in a hexagonal or an orthorhombic, perovskite-like form, and the monoclinic Y4Al2O9.

See also

Related Research Articles

Bohr model atomic model introduced by Niels Bohr in 1913

In atomic physics, the Rutherford–Bohr model or Bohr model, presented by Niels Bohr and Ernest Rutherford in 1913, is a system consisting of a small, dense nucleus surrounded by orbiting electrons—similar to the structure of the Solar System, but with attraction provided by electrostatic forces in place of gravity. After the cubic model (1902), the plum-pudding model (1904), the Saturnian model (1904), and the Rutherford model (1911) came the Rutherford–Bohr model or just Bohr model for short (1913). The improvement to the Rutherford model is mostly a quantum physical interpretation of it. The model's key success lay in explaining the Rydberg formula for the spectral emission lines of atomic hydrogen. While the Rydberg formula had been known experimentally, it did not gain a theoretical underpinning until the Bohr model was introduced. Not only did the Bohr model explain the reason for the structure of the Rydberg formula, it also provided a justification for its empirical results in terms of fundamental physical constants.

Hydrogen atom atom of element hydrogen

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe.

In chemistry, the mole fraction or molar fraction (xi) is defined as the amount of a constituent, ni divided by the total amount of all constituents in a mixture, ntot:

Stoichiometry Calculation of relative quantities of reactants and products in chemical reactions

Stoichiometry is the calculation of reactants and products in chemical reactions.

In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas if it alone occupied the entire volume of the original mixture at the same temperature. The total pressure of an ideal gas mixture is the sum of the partial pressures of the gases in the mixture.

In electrochemistry, the Nernst equation is an equation that relates the reduction potential of an electrochemical reaction to the standard electrode potential, temperature, and activities of the chemical species undergoing reduction and oxidation. It was named after Walther Nernst, a German physical chemist who formulated the equation.

Rydberg formula Formula for spectral line wavelengths in alkali metals

In atomic physics, the Rydberg formula calculates the wavelengths of a spectral line in many chemical elements. The formula was primarily presented as a generalization of the Balmer series for all atomic electron transitions of hydrogen. It was first empirically stated in 1888 by the Swedish physicist Johannes Rydberg, then theoretically by Niels Bohr in 1913, who used a primitive form of quantum mechanics. The formula directly generalizes the equations used to calculate the wavelengths of the hydrogen spectral series.

Reaction rate for a reactant or product in a particular reaction is intuitively defined as how quickly or slowly a reaction takes place

The reaction rate or rate of reaction is the speed at which reactants are converted into products. For example, the oxidative rusting of iron under Earth's atmosphere is a slow reaction that can take many years, but the combustion of cellulose in a fire is a reaction that takes place in fractions of a second. For most reactions, the rate decreases as the reaction proceeds.

In physical organic chemistry, a kinetic isotope effect (KIE) is the change in the reaction rate of a chemical reaction when one of the atoms in the reactants is replaced by one of its isotopes. Formally, it is the ratio of rate constants for the reactions involving the light (kL) and the heavy (kH) isotopically substituted reactants (isotopologues):

The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.

In crystallography, atomic packing factor (APF), packing efficiency or packing fraction is the fraction of volume in a crystal structure that is occupied by constituent particles. It is a dimensionless quantity and always less than unity. In atomic systems, by convention, the APF is determined by assuming that atoms are rigid spheres. The radius of the spheres is taken to be the maximum value such that the atoms do not overlap. For one-component crystals, the packing fraction is represented mathematically by

A spin exchange relaxation-free (SERF) magnetometer is a type of magnetometer developed at Princeton University in the early 2000s. SERF magnetometers measure magnetic fields by using lasers to detect the interaction between alkali metal atoms in a vapor and the magnetic field.

Mass (mass spectrometry) Physical quantities being measured

The mass recorded by a mass spectrometer can refer to different physical quantities depending on the characteristics of the instrument and the manner in which the mass spectrum is displayed.

Atomic mass mass of an atom in unified atomic mass units.

The atomic mass (ma) is the mass of an atom. Its unit is the dalton where 1 dalton is defined as ​112 of the mass of a single carbon-12 atom, at rest. The protons and neutrons of the nucleus account for nearly all of the total mass of atoms, with the electrons and nuclear binding energy making minor contributions. Thus, the atomic mass measured in Da has nearly the same value as the mass number.

Recombination (cosmology) Epoch at which charged electrons and protons first became bound to form electrically neutral hydrogen atoms

In cosmology, recombination refers to the epoch at which charged electrons and protons first became bound to form electrically neutral hydrogen atoms. Recombination occurred about 379,000 years after the Big Bang. The word "recombination" is misleading, since the big bang theory doesn't posit that protons and electrons had been combined before, but the name exists for historical reasons since it was named before the Big Bang hypothesis became the primary theory of the creation of the universe.

Transient kinetic isotope effects occur when the reaction leading to isotope fractionation does not follow pure first-order kinetics and therefore isotopic effects cannot be described with the classical equilibrium fractionation equations or with steady-state kinetic fractionation equations. In these instances, the general equations for biochemical isotope kinetics (GEBIK) and the general equations for biochemical isotope fractionation (GEBIF) can be used.

Heat transfer physics describes the kinetics of energy storage, transport, and [energy transformation]] by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is also transformed (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

Methane clumped isotopes are methane molecules that contain two or more rare isotopes. Methane (CH4) contains two elements, carbon and hydrogen, each of which has two stable isotopes. For carbon, 98.9% are in the form of carbon-12 (12C) and 1.1% are carbon-13 (13C); while for hydrogen, 99.99% are in the form of protium (1H) and 0.01% are deuterium (2H or D). Carbon-13 (13C) and deuterium (2H or D) are rare isotopes in methane molecules. The abundance of the clumped isotopes provides information independent from the traditional carbon or hydrogen isotope composition of methane molecules.

References

  1. McGraw-Hill Dictionary of Chemistry . McGraw-Hill. pp.  31. ISBN   0-07-141046-5.