Deadband

Last updated
Deadband is the period of dead-state of a system. Deadband.svg
Deadband is the period of dead-state of a system.

A deadband or dead-band (also known as a dead zone or a neutral zone) is a band of input values in the domain of a transfer function in a control system or signal processing system where the output is zero (the output is 'dead' - no action occurs). Deadband regions can be used in control systems such as servoamplifiers to prevent oscillation or repeated activation-deactivation cycles (called 'hunting' in proportional control systems). A form of deadband that occurs in mechanical systems, compound machines such as gear trains is backlash.

Contents

Input and output of the deadband operator. Deadband plot.svg
Input and output of the deadband operator.

Voltage regulators

In some power substations there are regulators that keep the voltage within certain predetermined limits, but there is a range of voltage in-between during which no changes are made, such as between 112 and 118 volts (the deadband is 6 volts), or between 215 to 225 volts (deadband is 10 volts).

Backlash

Backlash is a mechanical form of deadband. Backlash.svg
Backlash is a mechanical form of deadband.

Gear teeth with slop ( backlash ) exhibit deadband. There is no drive from the input to the output shaft in either direction while the teeth are not meshed. Leadscrews generally also have backlash and hence a deadband, which must be taken into account when making position adjustments, especially with CNC systems. If mechanical backlash eliminators are not available, the control can compensate for backlash by adding the deadband value to the position vector whenever direction is reversed.

Hysteresis versus Deadband

Deadband is different from hysteresis. With hysteresis, there is no deadband and so the output is always in one direction or another.[ clarification needed ] Devices with hysteresis have memory, in that previous system states dictate future states.[ clarification needed ] Examples of devices with hysteresis are single-mode thermostats and smoke alarms. Deadband is the range in a process where no changes to output are made. Hysteresis is the difference in a variable depending on the direction of travel. [1]

Thermostats

Simple (single mode) thermostats exhibit hysteresis. For example, the furnace in the basement of a house is adjusted automatically by the thermostat to be switched ON as soon as the temperature at the thermostat falls to 18 °C and the furnace is switched OFF by the thermostat as soon as the temperature at the thermostat reaches 22 °C. There is no temperature at which the house is not being heated or allowed to cool (furnace on or off).

A thermostat which sets a single temperature and automatically controls both heating and cooling systems without a mode change exhibits a deadband range around the target temperature. The low end of the deadband is just above the temperature where the heating system turns on. The high end of the deadband is just below the temperature where the air-conditioning system starts. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Comparator</span> Device that compares two voltages or currents

In electronics, a comparator is a device that compares two voltages or currents and outputs a digital signal indicating which is larger. It has two analog input terminals and and one binary digital output . The output is ideally

Instrumentation is a collective term for measuring instruments, used for indicating, measuring, and recording physical quantities. It is also a field of study about the art and science about making measurement instruments, involving the related areas of metrology, automation, and control theory. The term has its origins in the art and science of scientific instrument-making.

<span class="mw-page-title-main">Zener diode</span> Diode that allows current to flow in the reverse direction at a specific voltage

A Zener diode is a special type of diode designed to reliably allow current to flow "backwards" when a certain set reverse voltage, known as the Zener voltage, is reached.

<span class="mw-page-title-main">Hysteresis</span> Dependence of the state of a system on its history

Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of the moment often form a loop or hysteresis curve, where there are different values of one variable depending on the direction of change of another variable. This history dependence is the basis of memory in a hard disk drive and the remanence that retains a record of the Earth's magnetic field magnitude in the past. Hysteresis occurs in ferromagnetic and ferroelectric materials, as well as in the deformation of rubber bands and shape-memory alloys and many other natural phenomena. In natural systems, it is often associated with irreversible thermodynamic change such as phase transitions and with internal friction; and dissipation is a common side effect.

<span class="mw-page-title-main">Modular synthesizer</span> Synthesizer composed of separate modules

Modular synthesizers are synthesizers composed of separate modules for different functions. The modules can be connected together by the user to create a patch. The outputs from the modules may include audio signals, analog control voltages, or digital signals for logic or timing conditions. Typical modules are voltage-controlled oscillators, voltage-controlled filters, voltage-controlled amplifiers and envelope generators.

<span class="mw-page-title-main">Negative feedback</span> Reuse of output to stabilize a system

Negative feedback occurs when some function of the output of a system, process, or mechanism is fed back in a manner that tends to reduce the fluctuations in the output, whether caused by changes in the input or by other disturbances. A classic example of negative feedback is a heating system thermostat — when the temperature gets high enough, the heater is turned OFF. When the temperature gets too cold, the heat is turned back ON. In each case the "feedback" generated by the thermostat "negates" the trend.

<span class="mw-page-title-main">Switched-mode power supply</span> Power supply with switching regulator

A switched-mode power supply (SMPS), also called switching-mode power supply, switch-mode power supply, switched power supply, or simply switcher, is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently.

A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities. The process of converting one form of energy to another is known as transduction.

<span class="mw-page-title-main">Thermostat</span> Component which maintains a setpoint temperature

A thermostat is a regulating device component which senses the temperature of a physical system and performs actions so that the system's temperature is maintained near a desired setpoint.

<span class="mw-page-title-main">Control system</span> System that manages the behavior of other systems

A control system manages, commands, directs, or regulates the behavior of other devices or systems using control loops. It can range from a single home heating controller using a thermostat controlling a domestic boiler to large industrial control systems which are used for controlling processes or machines. The control systems are designed via control engineering process.

In control theory, an open-loop controller, also called a non-feedback controller, is a control loop part of a control system in which the control action is independent of the "process output", which is the process variable that is being controlled. It does not use feedback to determine if its output has achieved the desired goal of the input command or process setpoint.

An industrial process control or simply process control in continuous production processes is a discipline that uses industrial control systems and control theory to achieve a production level of consistency, economy and safety which could not be achieved purely by human manual control. It is implemented widely in industries such as automotive, mining, dredging, oil refining, pulp and paper manufacturing, chemical processing and power generating plants.

<span class="mw-page-title-main">Phase-fired controller</span>

Phase-fired control (PFC), also called phase cutting or phase-angle control, is a method for power limiting, applied to AC voltages. It works by modulating a thyristor, SCR, triac, thyratron, or other such gated diode-like devices into and out of conduction at a predetermined phase angle of the applied waveform.

Nonlinear control theory is the area of control theory which deals with systems that are nonlinear, time-variant, or both. Control theory is an interdisciplinary branch of engineering and mathematics that is concerned with the behavior of dynamical systems with inputs, and how to modify the output by changes in the input using feedback, feedforward, or signal filtering. The system to be controlled is called the "plant". One way to make the output of a system follow a desired reference signal is to compare the output of the plant to the desired output, and provide feedback to the plant to modify the output to bring it closer to the desired output.

<span class="mw-page-title-main">Fan heater</span> Heat producing machine to increase temperature of an enclosed space

A fan heater, also called a blow heater, is a heater that works by using a fan to pass air over a heat source. This heats up the air, which then leaves the heater, warming up the surrounding room. They can heat an enclosed space such as a room faster than a heater without a fan, but like any fan, create a degree of noise.

A control loop is the fundamental building block of control systems in general and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP).

<span class="mw-page-title-main">Bang–bang control</span> Binary feedback controller

In control theory, a bang–bang controller, is a feedback controller that switches abruptly between two states. These controllers may be realized in terms of any element that provides hysteresis. They are often used to control a plant that accepts a binary input, for example a furnace that is either completely on or completely off. Most common residential thermostats are bang–bang controllers. The Heaviside step function in its discrete form is an example of a bang–bang control signal. Due to the discontinuous control signal, systems that include bang–bang controllers are variable structure systems, and bang–bang controllers are thus variable structure controllers.

A mechanical amplifier or a mechanical amplifying element is a linkage mechanism that amplifies the magnitude of mechanical quantities such as force, displacement, velocity, acceleration and torque in linear and rotational systems. In some applications, mechanical amplification induced by nature or unintentional oversights in man-made designs can be disastrous, causing situations such as the 1940 Tacoma Narrows Bridge collapse. When employed appropriately, it can help to magnify small mechanical signals for practical applications.

<span class="mw-page-title-main">Backlash (engineering)</span> Clearance between mating components

In mechanical engineering, backlash, sometimes called lash, play, or slop, is a clearance or lost motion in a mechanism caused by gaps between the parts. It can be defined as "the maximum distance or angle through which any part of a mechanical system may be moved in one direction without applying appreciable force or motion to the next part in mechanical sequence."p. 1-8 An example, in the context of gears and gear trains, is the amount of clearance between mated gear teeth. It can be seen when the direction of movement is reversed and the slack or lost motion is taken up before the reversal of motion is complete. It can be heard from the railway couplings when a train reverses direction. Another example is in a valve train with mechanical tappets, where a certain range of lash is necessary for the valves to work properly.

<span class="mw-page-title-main">Fan coil unit</span> HVAC device

A fan coil unit (FCU), also known as a Vertical Fan Coil-Unit (VFC), is a device consisting of a heat exchanger (coil) and a fan. FCUs are commonly used in HVAC systems of residential, commercial, and industrial buildings that use ducted split air conditioning or with central plant cooling. FCUs are typically connected to ductwork and a thermostat to regulate the temperature of one or more spaces and to assist the main air handling unit for each space if used with chillers. The thermostat controls the fan speed and/or the flow of water or refrigerant to the heat exchanger using a control valve.

References

  1. "Dead Band Plus Hysteresis Estimation with ValveLink Diagnostics" (PDF). Product Bulletin. Fisher Controls International. October 2012. Retrieved 18 January 2013.
  2. Postlethwaite, Bruce. "On-Off Control". Introduction to Process Control. Department of Chemical and Process Engineering, University of Strathclyde. Retrieved 18 January 2013.