Delores Robinson

Last updated
Delores Marie Robinson
Alma mater Guilford College
Vanderbilt University
University of Arizona
Scientific career
Institutions University of Alabama
Thesis Structural and neodymium-isotopic evidence for the tectonic evolution of the Himalayan fold-thrust belt, western Nepal and the northern Tibetan Plateau  (2001)

Delores Marie Robinson is an American geologist and tectonicist who is a professor and department chair at the University of Alabama. Her research considers how orogenic systems evolve from porto-magmatic arcs, with a particular focus on Western Nepal, India, Bhutan and Southern Tibet.

Contents

Early life and education

Robinson studied at the Guilford College, and graduated with a bachelor's degree in geology in 1994. [1] She completed a research project on the gravity and magnetics of diabase dikes in Jamestown, North Carolina. [2] She moved to Vanderbilt University for graduate studies, earning a master's degree in 1997. Her research involved the characterization of magma chamber dynamics in Aztec Wash pluton. [3] Robinson became a doctoral student at the University of Arizona researching the kinematic history, structure and stratigraphy of Western Nepal. In 2001, Robinson was awarded a PhD. [4] During Robinson's research in Western Nepal, she created a geological map. [5]

Research and career

Robinson started her professional career as a structural geologist at BP in Alaska. She was appointed to the faculty of the University of Alabama in 2003, and promoted to Professor and Chair of Geological Sciences in 2010. [6] Her lithospheric scale and provenance studies research links structure, sedimentation, tectonics, and erosion through the use of field mapping, thermochronometers, geochronometers, and isotopes to reconstruct fold and thrust belts and theorize the evolution of mountain belts and orogenic systems. [7] Her research has considered the tectonics of the Himalayas. [8] [9] [10] In an effort to identify hidden hydrocarbons, Robinson collects and analyzes rocks and makes use of seismic data. [9]

Selected publications

Awards and honors

Personal life

Robinson is married with four children. [5]

Related Research Articles

The Nevadan orogeny occurred along the western margin of North America during the Middle Jurassic to Early Cretaceous time which is approximately from 155 Ma to 145 Ma. Throughout the duration of this orogeny there were at least two different kinds of orogenic processes occurring. During the early stages of orogenesis an "Andean type" continental magmatic arc developed due to subduction of the Farallon oceanic plate beneath the North American Plate. The latter stages of orogenesis, in contrast, saw multiple oceanic arc terranes accreted onto the western margin of North America in a "Cordilleran type" accretionary orogen. Deformation related to the accretion of these volcanic arc terranes is mostly limited to the western regions of the resulting mountain ranges and is absent from the eastern regions. In addition, the deformation experienced in these mountain ranges is mostly due to the Nevadan orogeny and not other external events such as the more recent Sevier and Laramide Orogenies. It is noted that the Klamath Mountains and the Sierra Nevada share similar stratigraphy indicating that they were both formed by the Nevadan orogeny. In comparison with other orogenic events, it appears that the Nevadan Orogeny occurred rather quickly taking only about 10 million years as compared to hundreds of millions of years for other orogenies around the world.

<span class="mw-page-title-main">Grenville orogeny</span> Mesoproterozoic mountain-building event

The Grenville orogeny was a long-lived Mesoproterozoic mountain-building event associated with the assembly of the supercontinent Rodinia. Its record is a prominent orogenic belt which spans a significant portion of the North American continent, from Labrador to Mexico, as well as to Scotland.

<span class="mw-page-title-main">Sevier orogeny</span> Mountain-building episode in North America

The Sevier orogeny was a mountain-building event that affected western North America from northern Canada to the north to Mexico to the south.

<span class="mw-page-title-main">Geology of Nepal</span>

The geology of Nepal is dominated by the Himalaya, the highest, youngest and a very highly active mountain range. Himalaya is a type locality for the study of on-going continent-continent collision tectonics. The Himalayan arc extends about 2,400 km (1,500 mi) from Nanga Parbat by the Indus River in northern Pakistan eastward to Namche Barwa by the gorge of the Tsangpo-Brahmaputra in eastern Tibet. About 800 km (500 mi) of this extent is in Nepal; the remainder includes Bhutan and parts of Pakistan, India, and China.

The Walker Lane is a geologic trough roughly aligned with the California/Nevada border southward to where Death Valley intersects the Garlock Fault, a major left lateral, or sinistral, strike-slip fault. The north-northwest end of the Walker Lane is between Pyramid Lake in Nevada and California's Lassen Peak where the Honey Lake Fault Zone, the Warm Springs Valley Fault, and the Pyramid Lake Fault Zone meet the transverse tectonic zone forming the southern boundary of the Modoc Plateau and Columbia Plateau provinces. The Walker Lane takes up 15 to 25 percent of the boundary motion between the Pacific Plate and the North American Plate, the other 75 percent being taken up by the San Andreas Fault system to the west. The Walker Lane may represent an incipient major transform fault zone which could replace the San Andreas as the plate boundary in the future.

<span class="mw-page-title-main">Slab (geology)</span> The portion of a tectonic plate that is being subducted

In geology, the slab is a significant constituent of subduction zones.

Sharon Mosher is an American geologist. She did her undergraduate work at University of Illinois Urbana-Champaign. After earning an MSc from Brown University, she returned to the University of Illinois to get her PhD in Geology in 1978. Since 2001 she has held the William Stamps Farish Chair at University of Texas, and, since 2009 she has served as the dean of the Jackson School of Geosciences at Texas. In 2013 she became the president of the American Geosciences Institute.

<span class="mw-page-title-main">Main Central Thrust</span>

The Main Central Thrust is a major geological fault where the Indian Plate has pushed under the Eurasian Plate along the Himalaya. The fault slopes down to the north and is exposed on the surface in a NW-SE direction (strike). It is a thrust fault that continues along 2900 km of the Himalaya mountain belt.

<span class="mw-page-title-main">Himalayan foreland basin</span> Active collisional foreland basin in South Asia

The Himalayan foreland basin is an active collisional foreland basin system in South Asia. Uplift and loading of the Eurasian Plate on to the Indian Plate resulted in the flexure (bending) of the Indian Plate, and the creation of a depression adjacent to the Himalayan mountain belt. This depression was filled with sediment eroded from the Himalaya, that lithified and produced a sedimentary basin ~3 to >7 km deep. The foreland basin spans approximately 2,000 kilometres (1,200 mi) in length and 450 kilometres (280 mi) in width. From west to east the foreland basin stretches across five countries: Pakistan, India, Nepal, Bangladesh, and Bhutan.

<span class="mw-page-title-main">Pre-collisional Himalaya</span>

Pre-collisional Himalaya is the arrangement of the Himalayan rock units before mountain-building processes resulted in the collision of Asia and India. The collision began in the Cenozoic and it is a type locality of a continental-continental collision. The reconstruction of the initial configuration of the rock units and the relationship between them is highly controversial, and major concerns relate to the arrangements of the different rock units in three dimensions. Several models have been advanced to explain the possible arrangements and petrogenesis of the rock units.

<span class="mw-page-title-main">Orogenic collapse</span>

In geology, orogenic collapse is the thinning and lateral spread of thickened crust. It is a broad term referring to processes which distribute material from regions of high gravitational potential energy to regions of low gravitational potential energy. Orogenic collapse can begin at any point during an orogeny due to overthickening of the crust. Post-orogenic collapse and post-orogenic extension refer to processes which take place once tectonic forces have been released, and represent a key phase of the Wilson Cycle, between continental collision and rifting.

<span class="mw-page-title-main">Geology of Myanmar</span>

The geology of Myanmar is shaped by dramatic, ongoing tectonic processes controlled by shifting tectonic components as the Indian plate slides northwards and towards Southeast Asia. Myanmar spans across parts of three tectonic plates separated by north-trending faults. To the west, a highly oblique subduction zone separates the offshore Indian plate from the Burma microplate, which underlies most of the country. In the center-east of Myanmar, a right lateral strike slip fault extends from south to north across more than 1,000 km (620 mi). These tectonic zones are responsible for large earthquakes in the region. The India-Eurasia plate collision which initiated in the Eocene provides the last geological pieces of Myanmar, and thus Myanmar preserves a more extensive Cenozoic geological record as compared to records of the Mesozoic and Paleozoic eras. Myanmar is physiographically divided into three regions: the Indo-Burman Range, Myanmar Central Belt and the Shan Plateau; these all display an arcuate shape bulging westwards. The varying regional tectonic settings of Myanmar not only give rise to disparate regional features, but they also foster the formation of petroleum basins and a diverse mix of mineral resources.

<span class="mw-page-title-main">Scandinavian Caledonides</span> Remains of an orogenic belt formed during the Silurian–Devonian period

The Scandinavian Caledonides are the vestiges of an ancient, today deeply eroded orogenic belt formed during the Silurian–Devonian continental collision of Baltica and Laurentia, which is referred to as the Scandian phase of the Caledonian orogeny. The size of the Scandinavian Caledonides at the time of their formation can be compared with the size of the Himalayas. The area east of the Scandinavian Caledonides, including parts of Finland, developed into a foreland basin where old rocks and surfaces were covered by sediments. Today, the Scandinavian Caledonides underlay most of the western and northern Scandinavian Peninsula, whereas other parts of the Caledonides can be traced into West and Central Europe as well as parts of Greenland and eastern North America.

<span class="mw-page-title-main">South China Craton</span> Precambrian continental block located in China

The South China Craton or South China Block is one of the Precambrian continental blocks in China. It is traditionally divided into the Yangtze Block in the NW and the Cathaysia Block in the SE. The Jiangshan–Shaoxing Fault represents the suture boundary between the two sub-blocks. Recent study suggests that the South China Block possibly has one more sub-block which is named the Tolo Terrane. The oldest rocks in the South China Block occur within the Kongling Complex, which yields zircon U–Pb ages of 3.3–2.9 Ga.

The Superior Craton is a stable crustal block covering Quebec, Ontario, and southeast Manitoba in Canada, and northern Minnesota in the United States. It is the biggest craton among those formed during the Archean period. A craton is a large part of the Earth's crust that has been stable and subjected to very little geological changes over a long time. The size of Superior Craton is about 1,572,000 km2. The craton underwent a series of events from 4.3 to 2.57 Ga. These events included the growth, drifting and deformation of both oceanic and continental crusts.

<span class="mw-page-title-main">Yavapai orogeny</span> Mountain building event 1.7 billion years ago in the southwestern United States

The Yavapai orogeny was an orogenic (mountain-building) event in what is now the Southwestern United States that occurred between 1710 and 1680 million years ago (Mya), in the Statherian Period of the Paleoproterozoic. Recorded in the rocks of New Mexico and Arizona, it is interpreted as the collision of the 1800-1700 Mya age Yavapai island arc terrane with the proto-North American continent. This was the first in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

<span class="mw-page-title-main">Geology of Himachal Pradesh</span>

The geology of Himachal Pradesh is dominated by Precambrian rocks that were assembled and deformed during the India-Asia collision and the subsequent Himalayan orogeny. The Northern Indian State Himachal Pradesh is located in the Western Himalaya. It has a rugged terrain, with elevation ranging from 320m to 6975m. Rock materials in the region are largely from the Indian craton, and their ages range from the Paleoproterozoic to the present day. It is generally agreed that the Indian craton collided with Asia 50-60 million years ago (Ma). Rock sequences were thrust and folded immensely during the collision. The area has also been shaped by focused orographic precipitation, glaciation and rapid erosion.

<span class="mw-page-title-main">Brevard Fault</span> Geological feature in the eastern United States

The Brevard Fault Zone is a 700-km long and several km-wide thrust fault that extends from the North Carolina-Virginia border, runs through the north metro Atlanta area, and ends near Montgomery, Alabama. It is an important Paleozoic era feature in the uplift of the Appalachian Mountains.

Carmala Nina Garzione is an American geologist who is Professor of Geosciences and Dean of the College of Science at the University of Arizona. Previously, she was Associate Provost for Faculty Affairs at the Rochester Institute of Technology, and prior to that she was a professor at the University of Rochester. She was awarded the 2009 Blavatnik Awards for Young Scientists.

Diane Seward is a low temperature thermochronologist. She is currently a Teaching Fellow at Victoria University of Wellington and affiliated with GNS Science. Seward's work has predominantly focused on thermochronology applied to basin analysis and tectonic evolution. Her research has also been instrumental in developing dating of volcanic deposit through fission track analysis.

References

  1. "Delores Robinson – Geological Sciences". geo.ua.edu. Retrieved 2021-07-03.
  2. Robinson, Delores M (1994). Gravity and magnetics study of diabase dikes in the Jamestown Quarry, Guilford County, North Carolina (Thesis). OCLC   870666853.
  3. Robinson, Delores M (1997). Investigating magma chamber dynamics through the examination of accessory minerals: the Aztec Wash pluton, southern Nevada (Thesis). OCLC   38268430.
  4. Robinson, D. M.; DeCelles, P. G.; Garzione, C. N.; Pearson, O. N.; Harrison, T. M.; Catlos, E. J. (2003-04-01). "Kinematic model for the Main Central thrust in Nepal". Geology. 31 (4): 359–362. doi:10.1130/0091-7613(2003)031<0359:KMFTMC>2.0.CO;2. ISSN   0091-7613.
  5. 1 2 "Delores Robinson – ESWN" . Retrieved 2021-07-03.
  6. "Delores M. Robinson – Center for Sedimentary Basin Studies". csbs.ua.edu. Retrieved 2021-07-03.
  7. "Delores M. Robinson". geo.ua.edu/contact-us/directory. Retrieved 2023-10-02.
  8. Mukherjee, Soumyajit; Carosi, Rodolfo; Beek, Peter van der; Mukherjee, Barun Kumar; Robinson, Delores M. (2015-01-01). "Tectonics of the Himalaya: an introduction". Geological Society, London, Special Publications. 412 (1): 1–3. doi:10.1144/SP412.14. hdl: 2318/1528982 . ISSN   0305-8719. S2CID   131497886.
  9. 1 2 Estes, Cary (April 13, 2020). "High Adventures in Geological Prospecting". Business Alabama Magazine. Retrieved 2021-07-03.
  10. Bryant, Chris (May 15, 2014). "Reaching for Rocks". Research magazine. University of Alabama. Archived from the original on 2016-08-19.
  11. "Delores Robinson elected Fellow in Geological Society of America – Geological Sciences". geo.ua.edu. Retrieved 2021-07-03.