Densely packed decimal (DPD) is an efficient method for binary encoding decimal digits.
The traditional system of binary encoding for decimal digits, known as binary-coded decimal (BCD), uses four bits to encode each digit, resulting in significant wastage of binary data bandwidth (since four bits can store 16 states and are being used to store only 10), even when using packed BCD. Densely packed decimal is a more efficient code that packs three digits into ten bits using a scheme that allows compression from, or expansion to, BCD with only two or three hardware gate delays. [1]
The densely packed decimal encoding is a refinement of Chen–Ho encoding; it gives the same compression and speed advantages, but the particular arrangement of bits used confers additional advantages:
In 1969, Theodore M. Hertz, and in 1971, Tien Chi Chen (陳天機) with Irving Tze Ho (何宜慈) devised lossless prefix codes (referred to as Hertz and Chen–Ho encodings [2] ) which packed three decimal digits into ten binary bits using a scheme which allowed compression from or expansion to BCD with only two or three gate delays in hardware. Densely packed decimal is a refinement of this, devised by Mike F. Cowlishaw in 2002, [1] which was incorporated into the IEEE 754-2008 [3] and ISO/IEC/IEEE 60559:2011 [4] standards for decimal floating point.
Like Chen–Ho encoding, DPD encoding classifies each decimal digit into one of two ranges, depending on the most significant bit of the binary form: "small" digits have values 0 through 7 (binary 0000–0111), and "large" digits, 8 through 9 (binary 1000–1001). Once it is known or has been indicated that a digit is small, three more bits are still required to specify the value. If a large value has been indicated, only one bit is required to distinguish between the values 8 or 9.
When encoding, the most significant bits of each of the three digits to be encoded determine one of eight coding patterns for the remaining bits, according to the following table. The table shows how, on decoding, the ten bits of the coded form in columns b9 through b0 are copied into the three digits d2 through d0, and the remaining bits are filled in with constant zeros or ones.
DPD encoded value | Decimal digits | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Code space (1024 states) | b9 | b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 | d2 | d1 | d0 | Values encoded | Description | Occurrences (1000 states) | |
50.0% (512 states) | a | b | c | d | e | f | 0 | g | h | i | 0abc | 0def | 0ghi | (0–7) (0–7) (0–7) | 3 small digits | 51.2% (512 states) | |
37.5% (384 states) | a | b | c | d | e | f | 1 | 0 | 0 | i | 0abc | 0def | 100i | (0–7) (0–7) (8–9) | 2 small digits, 1 large digit | 38.4% (384 states) | |
a | b | c | g | h | f | 1 | 0 | 1 | i | 0abc | 100f | 0ghi | (0–7) (8–9) (0–7) | ||||
g | h | c | d | e | f | 1 | 1 | 0 | i | 100c | 0def | 0ghi | (8–9) (0–7) (0–7) | ||||
9.375% (96 states) | g | h | c | 0 | 0 | f | 1 | 1 | 1 | i | 100c | 100f | 0ghi | (8–9) (8–9) (0–7) | 1 small digit, 2 large digits | 9.6% (96 states) | |
d | e | c | 0 | 1 | f | 1 | 1 | 1 | i | 100c | 0def | 100i | (8–9) (0–7) (8–9) | ||||
a | b | c | 1 | 0 | f | 1 | 1 | 1 | i | 0abc | 100f | 100i | (0–7) (8–9) (8–9) | ||||
3.125% (32 states, 8 used) | x | x | c | 1 | 1 | f | 1 | 1 | 1 | i | 100c | 100f | 100i | (8–9) (8–9) (8–9) | 3 large digits, b9, b8: don't care | 0.8% (8 states) |
Bits b7, b4 and b0 (c
, f
and i
) are passed through the encoding unchanged, and do not affect the meaning of the other bits. The remaining seven bits can be considered a seven-bit encoding for three base-5 digits.
Bits b8 and b9 are not needed and ignored when decoding DPD groups with three large digits (marked as "x" in the last row of the table above), but are filled with zeros when encoding.
The eight decimal values whose digits are all 8s or 9s have four codings each. The bits marked x in the table above are ignored on input, but will always be 0 in computed results. (The 3 × 8 = 24 non-standard encodings fill in the gap between 103 = 1000 and 210 − 1 = 1023.)
This table shows some representative decimal numbers and their encodings in BCD, Chen–Ho, and densely packed decimal (DPD):
Decimal | BCD | Chen–Ho | DPD |
---|---|---|---|
005 | 0000 0000 0101 | 000 000 0101 | 000 000 0101 |
009 | 0000 0000 1001 | 110 000 0001 | 000 000 1001 |
055 | 0000 0101 0101 | 000 010 1101 | 000 101 0101 |
079 | 0000 0111 1001 | 110 011 1001 | 000 111 1001 |
080 | 0000 1000 0000 | 101 000 0000 | 000 000 1010 |
099 | 0000 1001 1001 | 111 000 1001 | 000 101 1111 |
555 | 0101 0101 0101 | 010 110 1101 | 101 101 0101 |
999 | 1001 1001 1001 | 111 111 1001 | 001 111 1111 |
In computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually four or eight. Sometimes, special bit patterns are used for a sign or other indications.
In mathematics and computing, the hexadecimal numeral system is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
Double-precision floating-point format is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point.
A binary code represents text, computer processor instructions, or any other data using a two-symbol system. The two-symbol system used is often "0" and "1" from the binary number system. The binary code assigns a pattern of binary digits, also known as bits, to each character, instruction, etc. For example, a binary string of eight bits can represent any of 256 possible values and can, therefore, represent a wide variety of different items.
In digital electronics, a binary decoder is a combinational logic circuit that converts binary information from the n coded inputs to a maximum of 2n unique outputs. They are used in a wide variety of applications, including instruction decoding, data multiplexing and data demultiplexing, seven segment displays, and as address decoders for memory and port-mapped I/O.
The IEEE Standard for Floating-Point Arithmetic is a technical standard for floating-point arithmetic established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and portably. Many hardware floating-point units use the IEEE 754 standard.
Hexadecimal floating point is a format for encoding floating-point numbers first introduced on the IBM System/360 computers, and supported on subsequent machines based on that architecture, as well as machines which were intended to be application-compatible with System/360.
The Intel BCD opcodes are a set of six x86 instructions that operate with binary-coded decimal numbers. The radix used for the representation of numbers in the x86 processors is 2. This is called a binary numeral system. However, the x86 processors do have limited support for the decimal numeral system.
Chen–Ho encoding is a memory-efficient alternate system of binary encoding for decimal digits.
Decimal floating-point (DFP) arithmetic refers to both a representation and operations on decimal floating-point numbers. Working directly with decimal (base-10) fractions can avoid the rounding errors that otherwise typically occur when converting between decimal fractions and binary (base-2) fractions.
A decimal computer is a computer that can represent numbers and addresses in decimal and that provides instructions to operate on those numbers and addresses directly in decimal, without conversion to a pure binary representation. Some also had a variable wordlength, which enabled operations on numbers with a large number of digits.
The IEEE 754-2008 standard includes decimal floating-point number formats in which the significand and the exponent can be encoded in two ways, referred to as binary encoding and decimal encoding.
IEEE 754-2008 is a revision of the IEEE 754 standard for floating-point arithmetic. It was published in August 2008 and is a significant revision to, and replaces, the IEEE 754-1985 standard. The 2008 revision extended the previous standard where it was necessary, added decimal arithmetic and formats, tightened up certain areas of the original standard which were left undefined, and merged in IEEE 854 . In a few cases, where stricter definitions of binary floating-point arithmetic might be performance-incompatible with some existing implementation, they were made optional. In 2019, it was updated with a minor revision IEEE 754-2019.
Offset binary, also referred to as excess-K, excess-N, excess-e, excess code or biased representation, is a method for signed number representation where a signed number n is represented by the bit pattern corresponding to the unsigned number n+K, K being the biasing value or offset. There is no standard for offset binary, but most often the K for an n-bit binary word is K = 2n−1 (for example, the offset for a four-digit binary number would be 23=8). This has the consequence that the minimal negative value is represented by all-zeros, the "zero" value is represented by a 1 in the most significant bit and zero in all other bits, and the maximal positive value is represented by all-ones (conveniently, this is the same as using two's complement but with the most significant bit inverted). It also has the consequence that in a logical comparison operation, one gets the same result as with a true form numerical comparison operation, whereas, in two's complement notation a logical comparison will agree with true form numerical comparison operation if and only if the numbers being compared have the same sign. Otherwise the sense of the comparison will be inverted, with all negative values being taken as being larger than all positive values.
Single-precision floating-point format is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point.
In computing, decimal32 is a decimal floating-point computer numbering format that occupies 4 bytes (32 bits) in computer memory. It is intended for applications where it is necessary to emulate decimal rounding exactly, such as financial and tax computations. Like the binary16 format, it is intended for memory saving storage.
In computing, decimal64 is a decimal floating-point computer numbering format that occupies 8 bytes in computer memory. It is intended for applications where it is necessary to emulate decimal rounding exactly, such as financial and tax computations.
decimal128 is a decimal floating-point computer number format that occupies 128 bits in computer memory. Formally introduced in IEEE 754-2008, it is intended for applications where it is necessary to emulate decimal rounding exactly, such as financial and tax computations.
BCD, also called alphanumeric BCD, alphameric BCD, BCD Interchange Code, or BCDIC, is a family of representations of numerals, uppercase Latin letters, and some special and control characters as six-bit character codes.
SQUOZE is a memory-efficient representation of a combined source and relocatable object program file with a symbol table on punched cards which was introduced in 1958 with the SCAT assembler on the SHARE Operating System (SOS) for the IBM 709. A program in this format was called a SQUOZE deck. It was also used on later machines including the IBM 7090 and 7094.