Dental curing light

Last updated
Light curing of a dental filling material Light setting dental material.jpg
Light curing of a dental filling material

A dental curing light is a piece of dental equipment that is used for polymerization of light-cure resin-based composites. [1] It can be used on several different dental materials that are curable by light. The light used falls under the visible blue light spectrum. This light is delivered over a range of wavelengths and varies for each type of device. There are four basic types of dental curing light sources: tungsten halogen, light-emitting diodes (LED), plasma arcs, and lasers. The two most common are halogen and LEDs.

Contents

History

In the early 1960s, the first light curing resin composites were developed. [2] This led to the development of the first curing light, called Nuva Light, by Dentsply/Caulk in the 1970s. Nuva Light used ultraviolet light to cure resin composites. It was discontinued due to this requirement, as well as the fact that the shorter wavelengths of UV light did not penetrate deeply enough into the resin to adequately cure it. [3]

During the early 1980s, advances in the area of visible-light curing led to the creation of a curing device using blue light. The next type of curing light developed was the quartz-halogen bulb; [4] this device had longer wavelengths of the visible light spectrum and allowed for greater penetration of the curing light and light energy for resin composites. [3] The halogen curing light replaced the UV curing light.

The 1990s presented great improvements in light curing devices. As dental restorative materials advanced, so too did the technology used to cure these materials; the focus was to improve the intensity in order to be able to cure faster and deeper. In 1998 the plasma arc curing light was introduced. [5] It uses a high intensity light source, a fluorescent bulb containing plasma, in order to cure the resin-based composite, and claimed to cure resin composite material within 3 seconds. In practice, however, while the plasma arc curing light proved to be popular, negative aspects (including, but not limited to, an expensive initial price, curing times longer than the claimed 3 seconds, and expensive maintenance) of these lights resulted in the development of other curing light technologies.

The latest advancement in technology is the LED curing light. While LED curing lights have been available since the 1990s, they were not widely used until the frustrations presented through ownership of plasma arc lights became unbearable. While the LED curing light is a huge step forward from the initial curing light offerings, refinements and new technologies are continually being developed with the goal of quicker and more thorough curing of resin composites.

Tungsten halogen

Halogen lamp based curing light. W-curing-Demetron.jpg
Halogen lamp based curing light.
In the halogen curing light the power supply feeds a cooling fan and a small halogen lamp attached to a reflector. The blue light is produced by a dichroic filter and directed by a waveguide. The light is temporarily switched on by pressing the trigger. W-curing-Demetron-inside.jpg
In the halogen curing light the power supply feeds a cooling fan and a small halogen lamp attached to a reflector. The blue light is produced by a dichroic filter and directed by a waveguide. The light is temporarily switched on by pressing the trigger.

The tungsten halogen curing light, also known as simply "halogen curing light" is the most frequent polymerization source used in dental offices. [6] In order for the light to be produced, an electric current flows through a thin tungsten filament, which functions as a resistor. [6] This resistor is then “heated to temperatures of about 3,000 Kelvin, it becomes incandescent and emits infrared and electromagnetic radiation in the form of visible light”. [6] It provides a blue light between 400 and 500 nm, with an intensity of 400–600 mW cm−2. [7] This type of curing light however has certain drawbacks, the first of which is the large amounts of heat that the filament generates. This requires that the curing light have a ventilating fan installed which results in a larger curing light. [6] The fan generates a sound that may disturb some patients, and the wattage of the bulb is such (e.g. 80 W) these curing lights must be plugged into a power source; that is, they are not cordless. Furthermore, this light requires frequent monitoring and replacement of the actual curing light bulb because of the high temperatures that are reached. (For example, one model uses a bulb with an estimated life of 50 hours which would require annual replacement, assuming 12 minutes' use per day, 250 days per year.) Also, the time needed to fully cure the material is much more than the LED curing light.

Light emitting diode

LED curing light. LED Dental Curing Light.png
LED curing light.

These curing lights use one or more light-emitting diodes [LEDs] and produce blue light that cures the dental material. LEDs as light-curing sources were first suggested in the literature in 1995. [8] A short history of LED curing in dentistry was published in 2013. [9] This light uses a gallium nitride-based semiconductor for blue light emission. [6]

A 2004 article in the American Dental Association's journal explained, "In LED’s, a voltage is applied across the junctions of two doped semi- conductors (n-doped and p-doped), resulting in the generation and emission of light in a specific wavelength range. By controlling the chemical composition of the semiconductor combination, one can control the wavelength range. The dental LED curing lights use LED’s that produce a narrow spectrum of blue light in the 400–500 nm range (with a peak wavelength of about 460 nm), which is the useful energy range for activating the CPQ molecule most commonly used to initiate the photo-polymerization of dental monomers." [6]

These curing lights are very different from halogen curing lights. They are more lightweight, portable and effective. The heat generated from LED curing lights is much less which means it does not require a fan to cool it. Since the fan was no longer needed, a more lightweight and smaller light could be designed. The portability of it comes from the low consumption of power. The LED can now use rechargeable batteries, making it much more comfortable and easier to use.

The latest[ when? ] LED curing light cures material much faster than halogen lamps and previous LED curing lights. It uses a single high-intensity blue LED with a larger semiconductor crystal. [6] Light intensity and the illumination area has been increased with an output of 1,000 mW/cm2. [6] In order to emit such a high intensity light, it uses a highly reflective mirror film consisting of "multilayer polymer film technology". [6]

Operation

The halogen and LED curing lights work in the same way. Both of these lights require the operator to press a button or a trigger in order to turn on the blue light. A trigger is pressed to activate the halogen curing lights. Older models require the operator to hold down the trigger in order for the light to emit, whereas newer models only require the trigger to be pressed once. The light will remain on in both the newer models of halogen and LED lights until the timer expires after the trigger or button is pressed. When the light is turned on, it is placed directly over the tooth with the material until it is cured.

Significance

The development of the curing light greatly changed dentistry. Prior to the development of the dental curing light, different materials had to be used in order to have a resin based composite material placed in a tooth. The material used prior to this development was a self-curing resin material. These materials, an A material and a B material, were mixed separately before application. The A material was the base and the B material was the catalyst. This resin material was mixed first and then placed in the tooth. It is then hardened fully after 30–60 seconds. This presented several issues to the dentist. One issue was that the dentist did not have control over how quickly the material cured—once mixed the curing process started. This resulted in the dentist having to quickly and properly place the material in the tooth. If the material was not properly placed, then the material had to be excavated and the process started over again.

The development of this new technology gave way to new light activated resin materials. These new materials are very different from the previous ones. These materials do not need to be mixed and can be dispensed directly into the site. This new malleable resin material can only be fully cured with a dental curing light. This presents new advantages for dentists: the time constraint is now lifted and the dentist can now assure that the material is properly placed.

Related Research Articles

<span class="mw-page-title-main">Ultraviolet</span> Form of electromagnetic radiation

Ultraviolet (UV) is a form of electromagnetic radiation with wavelength shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs, Cherenkov radiation, and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack the energy to ionize atoms, it can cause chemical reactions and causes many substances to glow or fluoresce. Many practical applications, including chemical and biological effects, derive from the way that UV radiation can interact with organic molecules. These interactions can involve absorption or adjusting energy states in molecules, but do not necessarily involve heating.

Dental products are specially fabricated materials, designed for use in dentistry. There are many different types of dental products, and their characteristics vary according to their intended purpose.

Dental restoration, dental fillings, or simply fillings are treatments used to restore the function, integrity, and morphology of missing tooth structure resulting from caries or external trauma as well as to the replacement of such structure supported by dental implants. They are of two broad types—direct and indirect—and are further classified by location and size. A root canal filling, for example, is a restorative technique used to fill the space where the dental pulp normally resides.

Dental sealants are a dental treatment intended to prevent tooth decay. Teeth have recesses on their biting surfaces; the back teeth have fissures (grooves) and some front teeth have cingulum pits. It is these pits and fissures that are most vulnerable to tooth decay because food and bacteria stick in them and because they are hard-to-clean areas. Dental sealants are materials placed in these pits and fissures to fill them in, creating a smooth surface which is easy to clean. Dental sealants are mainly used in children who are at higher risk of tooth decay, and are usually placed as soon as the adult molar teeth come through.

<span class="mw-page-title-main">Dental composite</span> Substance used to fill cavities in teeth

Dental composite resins are dental cements made of synthetic resins. Synthetic resins evolved as restorative materials since they were insoluble, of good tooth-like appearance, insensitive to dehydration, easy to manipulate and inexpensive. Composite resins are most commonly composed of Bis-GMA and other dimethacrylate monomers, a filler material such as silica and in most applications, a photoinitiator. Dimethylglyoxime is also commonly added to achieve certain physical properties such as flow-ability. Further tailoring of physical properties is achieved by formulating unique concentrations of each constituent.

<span class="mw-page-title-main">Inlays and onlays</span>

In dentistry, inlays and onlays are used to fill cavities, and then cemented in place in the tooth. This is an alternative to a direct restoration, made out of composite, amalgam or glass ionomer, that is built up within the mouth.

<span class="mw-page-title-main">Dental drill</span> Dental instrument

A dental drill or handpiece is a hand-held, mechanical instrument used to perform a variety of common dental procedures, including removing decay, polishing fillings, performing cosmetic dentistry, and altering prostheses. The handpiece itself consists of internal mechanical components which initiate a rotational force and provide power to the cutting instrument, usually a dental burr. The type of apparatus used clinically will vary depending on the required function dictated by the dental procedure. It is common for a light source and cooling water-spray system to also be incorporated into certain handpieces; this improves visibility, accuracy and overall success of the procedure. The burrs are usually made of tungsten carbide or diamond.

<span class="mw-page-title-main">Solid-state lighting</span>

Solid-state lighting (SSL) is a type of lighting that uses semiconductor light-emitting diodes (LEDs), organic light-emitting diodes (OLED), or polymer light-emitting diodes (PLED) as sources of illumination rather than electrical filaments, plasma, or gas.

<span class="mw-page-title-main">Photopolymer</span>

A photopolymer or light-activated resin is a polymer that changes its properties when exposed to light, often in the ultraviolet or visible region of the electromagnetic spectrum. These changes are often manifested structurally, for example hardening of the material occurs as a result of cross-linking when exposed to light. An example is shown below depicting a mixture of monomers, oligomers, and photoinitiators that conform into a hardened polymeric material through a process called curing.

<span class="mw-page-title-main">Luting agent</span>

A luting agent is an application of a dental cement connecting the underlying tooth structure to a fixed prosthesis. To lute means to glue two different structures together. There are two major purposes of luting agents in dentistry – to secure a cast restoration in fixed prosthodontics, and to keep orthodontic bands and appliances in situ.

<span class="mw-page-title-main">CAD/CAM dentistry</span>

CAD/CAM dentistry is a field of dentistry and prosthodontics using CAD/CAM to improve the design and creation of dental restorations, especially dental prostheses, including crowns, crown lays, veneers, inlays and onlays, fixed dental prostheses bridges, dental implant supported restorations, dentures, and orthodontic appliances. CAD/CAM technology allows the delivery of a well-fitting, aesthetic, and a durable prostheses for the patient. CAD/CAM complements earlier technologies used for these purposes by any combination of increasing the speed of design and creation; increasing the convenience or simplicity of the design, creation, and insertion processes; and making possible restorations and appliances that otherwise would have been infeasible. Other goals include reducing unit cost and making affordable restorations and appliances that otherwise would have been prohibitively expensive. However, to date, chairside CAD/CAM often involves extra time on the part of the dentist, and the fee is often at least two times higher than for conventional restorative treatments using lab services.

<span class="mw-page-title-main">Infrared heater</span> Device designed to create radiative heat

An infrared heater or heat lamp is a heating appliance containing a high-temperature emitter that transfers energy to a cooler object through electromagnetic radiation. Depending on the temperature of the emitter, the wavelength of the peak of the infrared radiation ranges from 750 nm to 1 mm. No contact or medium between the emitter and cool object is needed for the energy transfer. Infrared heaters can be operated in vacuum or atmosphere.

<span class="mw-page-title-main">LED lamp</span> Electric light that produces light using LEDs

An LED lamp or LED light bulb is an electric light that produces light using light-emitting diodes (LEDs). LED lamps are significantly more energy-efficient than equivalent incandescent lamps and can be significantly more than most fluorescent lamps. The most efficient commercially available LED lamps have efficiencies of 200 lumen per watt (Lm/W). Commercial LED lamps have a lifespan many times longer than incandescent lamps.

Adhesive dentistry is a branch of dentistry which deals with adhesion or bonding to the natural substance of teeth, enamel and dentin. It studies the nature and strength of adhesion to dental hard tissues, properties of adhesive materials, causes and mechanisms of failure of the bonds, clinical techniques for bonding and newer applications for bonding such as bonding to the soft tissue. There is also direct composite bonding which uses tooth-colored direct dental composites to repair various tooth damages such as cracks or gaps.

In dentistry, the configuration factor refers to the number of bonded surfaces in an adhesive dental restoration. Because adhesive dental restorative material will adhere to the walls of a cavity preparation made available to it during polymerization, competing forces can arise during restoration of the tooth that can have both short and long term effects that correlate to the configuration of the cavity preparation.

Infrared lamps are electrical devices which emit infrared radiation. Infrared lamps are commonly used in radiant heating for industrial processes and building heating. Infrared LEDs are used for communication over optical fibers and in remote control devices. Infrared lamps are also used for some night vision devices where visible light would be objectionable. Infrared lamp sources are used in certain scientific and industrial instrument for chemical analysis of liquids and gases; for example, the pollutant sulfur dioxide in air can be measured using its infrared absorption characteristics.

Dental compomers, also known as polyacid-modified resin composite, are used in dentistry as a filling material. They were introduced in the early 1990s as a hybrid of two other dental materials, dental composites and glass ionomer cement, in an effort to combine their desirable properties: aesthetics for dental composites and the fluoride releasing ability for glass ionomer cements.

<span class="mw-page-title-main">UV curing</span>

UV curing is the process by which ultraviolet light is used to initiate a photochemical reaction that generates a crosslinked network of polymers. UV curing is adaptable to printing, coating, decorating, stereolithography, and in the assembly of a variety of products and materials. In comparison to other technologies, curing with UV energy may be considered a low-temperature process, a high-speed process, and is a solventless process, as cure occurs via direct polymerization rather than by evaporation. Originally introduced in the 1960s, this technology has streamlined and increased automation in many industries in the manufacturing sector.

Anterior teeth are one of the most scrutinized teeth, the size and shape and color of the anterior upper teeth plays an important role in dental aesthetics and smile aesthetics. A few aesthetic anterior problems could be solved with composite restorations. For example, dental caries, tooth fracture, enamel defects and diastemas. Composite restoration can also improve aesthetic by changing shape, color, length and alignment of teeth.

<span class="mw-page-title-main">David C. Watts</span> British biophysicist, material scientist, and academic

David Christopher Watts is a British biophysicist, material scientist, and academic. He is a professor of Biomaterials Science at the University of Manchester, and a Biomaterials Consultant at BIOMAN Materials Consultants.

References

  1. Sherwood, Anand (2010). Essentials of Operative Dentistry. St. Louis, MO: Jaypee Brothers Medical.
  2. Strassler, Howard E. "The Physics of Light Curing and Its Clinical Implications Compendium of Continuing Education in Dentistry". AEGIS Communications. Retrieved 4 December 2011.
  3. 1 2 "Curing lights for Composite Resins". Health Mantra: Your Mantra for Health, Wealth and Prosperity!. Health mantra. Retrieved 14 November 2011.
  4. "Curing Lights at a Glance". LED Technology Here to stay 2002:1–6. 3m ESPE. Retrieved 2 December 2011.
  5. Mahn, Eduardo (February 2011). "Light PolyMerization". Inside Dentistry. AEGIS Communications. 7 (2).
  6. 1 2 3 4 5 6 7 8 9 Wiggins, KM; Hartung, M; Althoff, O; Wastian, C; Mitra, SB (2004). "Curing performance of a new-generation light-emitting diode dental curing unit". Journal of the American Dental Association. 135 (10): 1471–9. doi:10.14219/jada.archive.2004.0059. PMID   15551990.
  7. Wataha, JC; Lewis, JB; Lockwood, PE; Noda, M; Messer, RL; Hsu, S (2008). "Response of THP-1 monocytes to blue light from dental curing lights". Journal of Oral Rehabilitation. 35 (2): 105–10. doi:10.1111/j.1365-2842.2007.01806.x. PMID   18197843.
  8. Mills, R. W. (1995). "Blue light emitting diodes--another method of light curing?". British Dental Journal. 178 (5): 169. doi:10.1038/sj.bdj.4808693. PMID   7702950.
  9. Jandt, KD; Mills, RW (2013). "A brief history of LED photopolymerization". Dental Materials. 29 (6): 605–617. doi:10.1016/j.dental.2013.02.003. PMID   23507002.