Descriptive interpretation

Last updated

According to Rudolf Carnap, in logic, an interpretation is a descriptive interpretation (also called a factual interpretation) if at least one of the undefined symbols of its formal system becomes, in the interpretation, a descriptive sign (i.e., the name of single objects, or observable properties). [1] In his Introduction to Semantics (Harvard Uni. Press, 1942) he makes a distinction between formal interpretations which are logical interpretations (also called mathematical interpretation or logico-mathematical interpretation) and descriptive interpretations: a formal interpretation is a descriptive interpretation if it is not a logical interpretation. [1]

Attempts to axiomatize the empirical sciences, Carnap said, use a descriptive interpretation to model reality.: [1] the aim of these attempts is to construct a formal system for which reality is the only interpretation. [2] - the world is an interpretation (or model) of these sciences, only insofar as these sciences are true. [2]

Any non-empty set may be chosen as the domain of a descriptive interpretation, and all n-ary relations among the elements of the domain are candidates for assignment to any predicate of degree n. [3]

Examples

A sentence is either true or false under an interpretation which assigns values to the logical variables. We might for example make the following assignments:

Individual constants

Predicates:

Sentential variables:

Under this interpretation the sentences discussed above would represent the following English statements:

Sources

  1. 1 2 3 Carnap, Rudolf, Introduction to Symbolic Logic and its Applications
  2. 1 2 The Concept and the Role of the Model in Mathematics and Natural and Social Sciences
  3. Mates, Benson (1972). Elementary Logic, Second Edition . New York: Oxford University Press. pp.  56. ISBN   0-19-501491-X.


Related Research Articles

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects and allows the use of sentences that contain variables, so that rather than propositions such as Socrates is a man one can have expressions in the form "there exists x such that x is Socrates and x is a man" and there exists is a quantifier while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

History of logic aspect of history

The history of logic deals with the study of the development of the science of valid inference (logic). Formal logics developed in ancient times in India, China, and Greece. Greek methods, particularly Aristotelian logic as found in the Organon, found wide application and acceptance in Western science and mathematics for millennia. The Stoics, especially Chrysippus, began the development of predicate logic.

In predicate logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any" or "for all". It expresses that a propositional function can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.

The term proposition has a broad use in contemporary analytic philosophy. The most basic meaning is a statement proposing an idea that can be true or false. It is used to refer to some or all of the following: the primary bearers of truth-value, the objects of belief and other "propositional attitudes", the referents of that-clauses, and the meanings of declarative sentences. Propositions are the sharable objects of attitudes and the primary bearers of truth and falsity. This stipulation rules out certain candidates for propositions, including thought- and utterance-tokens which are not sharable, and concrete events or facts, which cannot be false.

In mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a free variable is a notation (symbol) that specifies places in an expression where substitution may take place and is not a parameter of this or any container expression. Some older books use the terms real variable and apparent variable for free variable and bound variable, respectively. The idea is related to a placeholder, or a wildcard character that stands for an unspecified symbol.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

In formal logic and related branches of mathematics, a functional predicate, or function symbol, is a logical symbol that may be applied to an object term to produce another object term. Functional predicates are also sometimes called mappings, but that term has other meanings as well. In a model, a function symbol will be modelled by a function.

Metalogic is the study of the metatheory of logic. Whereas logic studies how logical systems can be used to construct valid and sound arguments, metalogic studies the properties of logical systems. Logic concerns the truths that may be derived using a logical system; metalogic concerns the truths that may be derived about the languages and systems that are used to express truths.

In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language. A formal language can be identified with the set of formulas in the language.

In logic, an atomic sentence is a type of declarative sentence which is either true or false and which cannot be broken down into other simpler sentences. For example, "The dog ran" is an atomic sentence in natural language, whereas "The dog ran and the cat hid." is a molecular sentence in natural language.

In mathematical logic, a ground term of a formal system is a term that does not contain any free variables.

In mathematical logic, a sentence of a predicate logic is a boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition, something that must be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values: As the free variables of a (general) formula can range over several values, the truth value of such a formula may vary.

In the foundations of mathematics, Morse–Kelley set theory (MK), Kelley–Morse set theory (KM), Morse–Tarski set theory (MT), Quine–Morse set theory (QM) or the system of Quine and Morse is a first order axiomatic set theory that is closely related to von Neumann–Bernays–Gödel set theory (NBG). While von Neumann–Bernays–Gödel set theory restricts the bound variables in the schematic formula appearing in the axiom schema of Class Comprehension to range over sets alone, Morse–Kelley set theory allows these bound variables to range over proper classes as well as sets, as first suggested by Quine in 1940 for his system ML.

Logical form form for logical arguments, obtained by abstracting from the subject matter of its content terms

In mathematics and philosophy, a logical form of a syntactic expression is a precisely-specified semantic version of that expression in a formal system. Informally, the logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguous logical interpretation with respect to a formal system. In an ideal formal language, the meaning of a logical form can be determined unambiguously from syntax alone. Logical forms are semantic, not syntactic constructs; therefore, there may be more than one string that represents the same logical form in a given language.

In mathematical logic, an atomic formula is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformulas. Atoms are thus the simplest well-formed formulas of the logic. Compound formulas are formed by combining the atomic formulas using the logical connectives.

In logic, the formal languages used to create expressions consist of symbols, which can be broadly divided into constants and variables. The constants of a language can further be divided into logical symbols and non-logical symbols.

In logic and mathematics, proof by example is a logical fallacy whereby the validity of a statement is illustrated through one or more examples or cases—rather than a full-fledged proof.

In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.

An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics.

In mathematical logic, formation rules are rules for describing which strings of symbols formed from the alphabet of a formal language are syntactically valid within the language. These rules only address the location and manipulation of the strings of the language. It does not describe anything else about a language, such as its semantics. .