Desktop virtualization

Last updated

Desktop virtualization is a software technology that separates the desktop environment and associated application software from the physical client device that is used to access it.

Contents

Desktop virtualization can be used in conjunction with application virtualization and user profile management systems, now termed user virtualization, to provide a comprehensive desktop environment management system. In this mode, all the components of the desktop are virtualized, which allows for a highly flexible and much more secure desktop delivery model. In addition, this approach supports a more complete desktop disaster recovery strategy as all components are essentially saved in the data center and backed up through traditional redundant maintenance systems. If a user's device or hardware is lost, the restore is straightforward and simple, because the components will be present at login from another device. In addition, because no data are saved to the user's device, if that device is lost, there is much less chance that any critical data can be retrieved and compromised.

System architectures

Desktop virtualization implementations are classified based on whether the virtual desktop runs remotely or locally, on whether the access is required to be constant or is designed to be intermittent, and on whether or not the virtual desktop persists between sessions. Typically, software products that deliver desktop virtualization solutions can combine local and remote implementations into a single product to provide the most appropriate support specific to requirements. The degrees of independent functionality of the client device is necessarily interdependent with the server location and access strategy. And virtualization is not strictly required for remote control to exist. Virtualization is employed to present independent instances to multiple users and requires a strategic segmentation of the host server and presentation at some layer of the host's architecture. The enabling layer—usually application software—is called a hypervisor. [1]

Remote desktop virtualization

Remote desktop virtualization implementations operate in a client/server computing environment. Application execution takes place on a remote operating system which communicates with the local client device over a network using a remote display protocol through which the user interacts with applications. All applications and data used remain on the remote system with only display, keyboard, and mouse information communicated with the local client device, which may be a conventional PC/laptop, a thin client device, a tablet, or even a smartphone. A common implementation of this approach involves hosting multiple desktop operating system instances on a server hardware platform running a hypervisor. Its latest iteration is generally referred to as Virtual Desktop Infrastructure, or "VDI" (note that "VDI" is often used incorrectly to refer to any desktop virtualization implementation [2] ).

Remote desktop virtualization is frequently used in the following scenarios:

It is also used as a means of providing access to Windows applications on non-Windows endpoints (including tablets, smartphones, and non-Windows-based desktop PCs and laptops).

Remote desktop virtualization can also provide a means of resource sharing, to distribute low-cost desktop computing services in environments where providing every user with a dedicated desktop PC is either too expensive or otherwise unnecessary.

For IT administrators, this means a more centralized, efficient client environment that is easier to maintain and able to respond more quickly to the changing needs of the user and business. [3] [4]

Presentation virtualization

Remote desktop software allows a user to access applications and data on a remote computer over a network using a remote-display protocol. A VDI service provides individual desktop operating system instances (e.g., Windows XP, 7, 8.1, 10, etc.) for each user, whereas remote desktop sessions run in a single shared-server operating system. Both session collections and virtual machines support full desktop based sessions and remote application deployment. [5] [6]

The use of a single shared-server operating system instead of individual desktop operating system instances consumes significantly fewer resources than the same number of VDI sessions. At the same time, VDI licensing is both more expensive and less flexible than equivalent remote desktop licenses. Together, these factors can combine to make remote desktop-based remote desktop virtualization more attractive than VDI.

VDI implementations allow for delivering personalized workspace back to a user, which retains all the user's customizations. There are several methods to accomplish this.

Application virtualization

Application virtualization improves delivery and compatibility of applications by encapsulating them from the underlying operating system on which they are executed. A fully virtualized application is not installed on hardware in the traditional sense. Instead, a hypervisor layer intercepts the application, which at runtime acts as if it is interfacing with the original operating system and all the resources managed by it when in reality it is not.

User virtualization

User virtualization separates all of the software aspects that define a user’s personality on a device from the operating system and applications to be managed independently and applied to a desktop as needed without the need for scripting, group policies, or use of roaming profiles. The term "user virtualization" sounds misleading; this technology is not limited to virtual desktops. User virtualization can be used regardless of platform – physical, virtual, cloud, etc. The major desktop virtualization platform vendors, Citrix, Microsoft and VMware, all offer a form of basic user virtualization in their platforms.

Layering

Desktop layering is a method of desktop virtualization that divides a disk image into logical parts to be managed individually. For example, if all members of a user group use the same OS, then the core OS only needs to be backed up once for the entire environment who share this layer. Layering can be applied to local physical disk images, client-based virtual machines, or host-based desktops. Windows operating systems are not designed for layering, therefore each vendor must engineer their own proprietary solution.

Desktop as a service

Remote desktop virtualization can also be provided via cloud computing similar to that provided using a software as a service model. This approach is usually referred to as cloud-hosted virtual desktops. Cloud-hosted virtual desktops are divided into two technologies:

  1. Managed VDI, which is based on VDI technology provided as an outsourced managed service, and
  2. Desktop as a service (DaaS), which provides a higher level of automation and real multi-tenancy, reducing the cost of the technology. The DaaS provider typically takes full responsibility for hosting and maintaining the computer, storage, and access infrastructure, as well as applications and application software licenses needed to provide the desktop service in return for a fixed monthly fee.

Cloud-hosted virtual desktops can be implemented using both VDI and Remote Desktop Services-based systems and can be provided through the public cloud, private cloud infrastructure, and hybrid cloud platforms. Private cloud implementations are commonly referred to as "managed VDI". Public cloud offerings tend to be based on desktop-as-a-service technology.

Local desktop virtualization

Local desktop virtualization implementations run the desktop environment on the client device using hardware virtualization or emulation. For hardware virtualization, depending on the implementation both Type I and Type II hypervisors may be used. [7]

Local desktop virtualization is well suited for environments where continuous network connectivity cannot be assumed and where application resource requirements can be better met by using local system resources. However, local desktop virtualization implementations do not always allow applications developed for one system architecture to run on another. For example, it is possible to use local desktop virtualization to run Windows 7 on top of OS X on an Intel-based Apple Mac, using a hypervisor, as both use the same x86 architecture.

See also

Related Research Articles

<span class="mw-page-title-main">Thin client</span> Non-powerful computer optimized for remote server access

In computer networking, a thin client is a simple (low-performance) computer that has been optimized for establishing a remote connection with a server-based computing environment. They are sometimes known as network computers, or in their simplest form as zero clients. The server does most of the work, which can include launching software programs, performing calculations, and storing data. This contrasts with a rich client or a conventional personal computer; the former is also intended for working in a client–server model but has significant local processing power, while the latter aims to perform its function mostly locally.

<span class="mw-page-title-main">Citrix Systems</span> American software company

Citrix Systems, Inc. is an American multinational cloud computing and virtualization technology company that provides server, application and desktop virtualization, networking, software as a service (SaaS), and cloud computing technologies. Citrix products were claimed to be in use by over 400,000 clients worldwide, including 99% of the Fortune 100, and 98% of the Fortune 500.

A virtual storage area network is a logical representation of a physical storage area network (SAN). A VSAN abstracts the storage-related operations from the physical storage layer, and provides shared storage access to the applications and virtual machines by combining the servers' local storage over a network into a single or multiple storage pools.

Application virtualization is a software technology that encapsulates computer programs from the underlying operating system on which they are executed. A fully virtualized application is not installed in the traditional sense, although it is still executed as if it were. The application behaves at runtime like it is directly interfacing with the original operating system and all the resources managed by it, but can be isolated or sandboxed to varying degrees.

Hardware virtualization is the virtualization of computers as complete hardware platforms, certain logical abstractions of their componentry, or only the functionality required to run various operating systems. Virtualization hides the physical characteristics of a computing platform from the users, presenting instead an abstract computing platform. At its origins, the software that controlled virtualization was called a "control program", but the terms "hypervisor" or "virtual machine monitor" became preferred over time.

In computing, the term remote desktop refers to a software- or operating system feature that allows a personal computer's desktop environment to be run remotely from one system, while being displayed on a separate client device. Remote desktop applications have varying features. Some allow attaching to an existing user's session and "remote controlling", either displaying the remote control session or blanking the screen. Taking over a desktop remotely is a form of remote administration.

<span class="mw-page-title-main">Pano Logic</span> American information technology company

Pano Logic was a manufacturer of devices which present virtual desktops to the end user with no local processing power. They describe this concept as "zero client". This is perceived as offering benefits in end-user support and in power provision to desks. OEM versions have been included in displays from some vendors, allowing a single unit to be deployed. The company failed in October 2012. In March 2013, Propalms announced they had acquired the rights to support Panologic customers, and will "help transition the customer base to a new platform".

In computing, virtualization or virtualisation in British English is the act of creating a virtual version of something at the same abstraction level, including virtual computer hardware platforms, storage devices, and computer network resources.

A hosted desktop is a product set within the larger cloud-computing sphere generally delivered using a combination of technologies including hardware virtualization and some form of remote connection software, Citrix XenApp or Microsoft Remote Desktop Services being two of the most common. Processing takes place within the provider's datacenter environment with traffic between the datacenter and the client being primarily display updates, mouse movements and keyboard activity.

Leostream, founded in 2002, is a privately held technology company based in Waltham, Massachusetts. Its flagship product is a connection broker for virtual desktop infrastructure (VDI) and resources hosted in the datacenter.

XenClient is a discontinued desktop virtualization product developed by Citrix. It runs virtual desktops on endpoint devices. The product reached end of-life in December 2016. Unlike modern systems, XenClient runs both operating system and applications locally in the end users device, without the need for a connection to a data center, making it suitable for use in environments with limited connectivity, disconnected operation on laptops, and other scenarios where local execution is desired while keeping management centralized.

Wanova, Inc, headquartered in San Jose, California, provides software allowing IT organizations to manage, support and protect data on desktop and laptop computers. Wanova's primary product, Wanova Mirage, was designed as an alternative to server-hosted desktop virtualization technologies.

Founded by Alex Vasilevsky, Virtual Computer was a venture-backed software company in the Boston area that produces desktop virtualization products, which combine centralized management with local execution on a hypervisor running on PCs. By running the workload on the PC, Virtual Computer enables companies to have centralized management without servers, storage, and networking required for server-hosted VDI.

Software-defined storage (SDS) is a marketing term for computer data storage software for policy-based provisioning and management of data storage independent of the underlying hardware. Software-defined storage typically includes a form of storage virtualization to separate the storage hardware from the software that manages it. The software enabling a software-defined storage environment may also provide policy management for features such as data deduplication, replication, thin provisioning, snapshots and backup.

<span class="mw-page-title-main">Teradici</span> Canadian software company

Teradici Corporation was a privately held software company founded in 2004, which was acquired by HP Inc. in October 2021. Teradici initially developed a protocol (PCoIP) for compressing and decompressing images and sound when remotely accessing blade servers, and implemented it in hardware. This technology was later expanded to thin clients/zero clients for general Virtual Desktop Infrastructure. Teradici's protocol or hardware is used by HP, Dell-Wyse, Amulet Hotkey, Samsung, Amazon Web Services, Fujitsu, and VMware.

<span class="mw-page-title-main">2X Software</span> Maltese software company

2X Software was a Maltese software company specializing in virtual desktop, application virtualization, application delivery, Remote Desktop Services, remote access and Mobile Device Management. On 25 February 2015, 2X Software was acquired by Parallels, Inc. The 2X products, Remote Application Server and Mobile Device Management, are now included in Parallels' offering.

GPU virtualization refers to technologies that allow the use of a GPU to accelerate graphics or GPGPU applications running on a virtual machine. GPU virtualization is used in various applications such as desktop virtualization, cloud gaming and computational science.

Remote mobile virtualization, like its counterpart desktop virtualization, is a technology that separates operating systems and applications from the client devices that access them. However, while desktop virtualization allows users to remotely access Windows desktops and applications, remote mobile virtualization offers remote access to mobile operating systems such as Android.

Citrix Virtual Apps is an application virtualization software produced by Citrix Systems that allows Windows applications to be accessed via individual devices from a shared server or cloud system.

Ericom Connect is a remote access/application publishing solution produced by Ericom Software that provides secure, centrally managed access to physical or hosted desktops and applications running on Microsoft Windows and Linux systems.

References

  1. Rouse, Margaret; Madden, Jack. "Desktop virtualization". TechTarget. Retrieved January 3, 2013.
  2. Keith Schultz (16 March 2012). "Review: V.D.I. without the server connection". InfoWorld. Retrieved 3 January 2013. One subset of V.D.I., dubbed client-hosted or offline mode
  3. Baburajan, Rajani (August 24, 2011). "The rising cloud storage market opportunity strengthens vendors". technews.tmcnet.com.
  4. Oestreich, Ken (November 15, 2010). "Converged infrastructure". thectoforum.com. Archived from the original on January 13, 2012.[ need quotation to verify ]
  5. "Configuring the R.D. session host server to host RemoteApp programs". 17 November 2009.
  6. "Configuring virtual desktops for RemoteApp and desktop connection". 17 November 2009.
  7. "Desktop virtualization cheat sheet". networkworld.com. Archived from the original on 2010-02-27. Retrieved 2010-03-17.

Further reading