Desulfonation reaction

Last updated

In organic chemistry, the desulfonation reaction is the hydrolysis of sulfonic acids: [1]

RC6H4SO3H + H2O → RC6H5 + H2SO4

The reaction applied to aryl and naphthylsulfonic acids. It is the reverse of sulfonation. [2] The temperature of desulfonation correlates with the ease of the sulfonation.

Desulfonation reaction equation.svg

Applications in synthesis

This reactivity is exploited in the regiospecific preparation of many di- and tri-substituted aromatic compounds. The approach exploits the meta-directing effect of the sulfonic acid group. 2-Chlorotoluene for example can be prepared by chlorination of p-toluenesulfonic acid, followed by hydrolysis. The method is also useful for the preparation of 2,6-dinitroaniline [3] and 2-bromophenol via phenol-2,4-disulfonic acid. [4]

Related Research Articles

<span class="mw-page-title-main">Acyl halide</span> Oxoacid compound with an –OH group replaced by a halogen

In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.

<span class="mw-page-title-main">Anthraquinone</span> Yellow chemical compound: building block of many dyes

Anthraquinone, also called anthracenedione or dioxoanthracene, is an aromatic organic compound with formula C
14
H
8
O
2
. Several isomers exist but these terms usually refer to 9,10-anthraquinone wherein the keto groups are located on the central ring. It is used as a digester additive to wood pulp for papermaking. Many anthraquinone derivatives are generated by organisms or synthesised industrially for use as dyes, pharmaceuticals, and catalysts. Anthraquinone is a yellow, highly crystalline solid, poorly soluble in water but soluble in hot organic solvents. It is almost completely insoluble in ethanol near room temperature but 2.25 g will dissolve in 100 g of boiling ethanol. It is found in nature as the rare mineral hoelite.

<span class="mw-page-title-main">Acetyl chloride</span> Organic compound (CH₃COCl)

Acetyl chloride is an acyl chloride derived from acetic acid. It belongs to the class of organic compounds called acid halides. It is a colorless, corrosive, volatile liquid. Its formula is commonly abbreviated to AcCl.

<span class="mw-page-title-main">Sulfonic acid</span> Organic compounds with the structure R−S(=O)2−OH

In organic chemistry, sulfonic acid refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

<span class="mw-page-title-main">Sulfone</span> Organosulfur compound of the form >S(=O)2

In organic chemistry, a sulfone is a organosulfur compound containing a sulfonyl functional group attached to two carbon atoms. The central hexavalent sulfur atom is double-bonded to each of two oxygen atoms and has a single bond to each of two carbon atoms, usually in two separate hydrocarbon substituents.

<span class="mw-page-title-main">Aromatic sulfonation</span> Chemical reaction which replaces a hydrogen on an arene with sulfonic acid, –NH–SO3H

In organic chemistry, aromatic sulfonation is an reaction in which a hydrogen atom on an arene is replaced by a sulfonic acid group. Together with nitration and chlorination, aromatic sulfonation is a widely used electrophilic aromatic substitutions. Aryl sulfonic acids are used as detergents, dye, and drugs.

<span class="mw-page-title-main">Diazonium compound</span> Group of organonitrogen compounds

Diazonium compounds or diazonium salts are a group of organic compounds sharing a common functional group [R−N+≡N]X where R can be any organic group, such as an alkyl or an aryl, and X is an inorganic or organic anion, such as a halide. The parent compound where R is hydrogen, is diazenylium.

<span class="mw-page-title-main">Camphorsulfonic acid</span> Chemical compound

Camphorsulfonic acid, sometimes abbreviated CSA or 10-CSA is an organosulfur compound. Like typical sulfonic acids, it is a relatively strong acid that is a colorless solid at room temperature and is soluble in water and a wide variety of organic substances.

<span class="mw-page-title-main">2,6-Lutidine</span> Chemical compound

2,6-Lutidine is a natural heterocyclic aromatic organic compound with the formula (CH3)2C5H3N. It is one of several dimethyl-substituted derivative of pyridine, all of which are referred to as lutidines. It is a colorless liquid with mildly basic properties and a pungent, noxious odor.

tert-Butyl chloride is the organochloride with the formula (CH3)3CCl. It is a colorless, flammable liquid. It is sparingly soluble in water, with a tendency to undergo hydrolysis to the corresponding tert-butyl alcohol. It is produced industrially as a precursor to other organic compounds.

<span class="mw-page-title-main">Sommelet reaction</span> Chemical reaction

The Sommelet reaction is an organic reaction in which a benzyl halide is converted to an aldehyde by action of hexamine and water. It is named after the French chemist Marcel Sommelet, who first reported the reaction in 1913.

<span class="mw-page-title-main">2-Naphthol</span> Chemical compound

2-Naphthol, or β-naphthol, is a fluorescent colorless (or occasionally yellow) crystalline solid with the formula C10H7OH. It is an isomer of 1-naphthol, differing by the location of the hydroxyl group on the naphthalene ring. The naphthols are naphthalene homologues of phenol, but more reactive. Both isomers are soluble in simple alcohols, ethers, and chloroform. 2-Naphthol is a widely used intermediate for the production of dyes and other compounds.

2,6-Dichlorophenol is a compound with formula C6H3Cl2OH. It is one of the six isomers of dichlorophenol. It is a colorless solid. Its pKa is 6.78, which is about 100x more acidic than 2-chlorophenol (8.52) and 1000x more acidic than phenol itself (9.95).

In nitrile reduction a nitrile is reduced to either an amine or an aldehyde with a suitable chemical reagent.

<span class="mw-page-title-main">1,4-Dihydroxyanthraquinone</span> Chemical compound

1,4-Dihydroxyanthraquinone, also called quinizarin or Solvent Orange 86, is an organic compound derived from anthroquinone. Quinizarin is an orange or red-brown crystalline powder. It is formally derived from anthraquinone by replacement of two hydrogen atoms by hydroxyl (OH) groups. It is one of ten dihydroxyanthraquinone isomers and occurs in small amounts in the root of the madder plant, Rubia tinctorum.

4-Nitrotoluene or para-nitrotoluene is an organic compound with the formula CH3C6H4NO2. It is a pale yellow solid. It is one of three isomers of nitrotoluene.

<span class="mw-page-title-main">2,6-Naphthalenedicarboxylic acid</span> Chemical compound

2,6-Naphthalenedicarboxylic acid is an organic compound with the formula C10H6(CO2H)2. This colorless solid is one of several isomers of naphthalenedicarboxylic acid. It is a precursor to the high performance polyester polyethylene naphthalate (PEN, poly(ethylene-2,6-naphthalene dicarboxylate)). It is also used in the synthesis of some metal-organic frameworks.

<span class="mw-page-title-main">Sulfonamide</span> Organosulfur compounds containing –S(=O)2–N< functional group

In organic chemistry, the sulfonamide functional group is an organosulfur group with the structure R−S(=O)2−NR2. It consists of a sulfonyl group connected to an amine group. Relatively speaking this group is unreactive. Because of the rigidity of the functional group, sulfonamides are typically crystalline; for this reason, the formation of a sulfonamide is a classic method to convert an amine into a crystalline derivative which can be identified by its melting point. Many important drugs contain the sulfonamide group.

Hydroxylamine-<i>O</i>-sulfonic acid Chemical compound

Hydroxylamine-O-sulfonic acid (HOSA) or aminosulfuric acid is the inorganic compound with molecular formula H3NO4S that is formed by the sulfonation of hydroxylamine with oleum. It is a white, water-soluble and hygroscopic, solid, commonly represented by the condensed structural formula H2NOSO3H, though it actually exists as a zwitterion and thus is more accurately represented as +H3NOSO3. It is used as a reagent for the introduction of amine groups (–NH2), for the conversion of aldehydes into nitriles and alicyclic ketones into lactams (cyclic amides), and for the synthesis of variety of nitrogen-containing heterocycles.

<span class="mw-page-title-main">2,6-Dichloroaniline</span> Chemical compound

2,6-Dichloroaniline is an organic compound with the formula C6H3Cl2(NH2). It is one of several isomers of dichloroaniline. It is a colorless or white solid. Derivatives include the drugs clonidine and diclofenac.

References

  1. Smith, Michael B.; March, Jerry (2007), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience, p. 749, ISBN   978-0-471-72091-1
  2. Otto Lindner, Lars Rodefeld "Benzenesulfonic Acids and Their Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a03_507
  3. Harry P. Schultz (1951). "2,6-Dintroaniline". Org. Synth. 31: 45. doi:10.15227/orgsyn.031.0045.
  4. Ralph C. Huston; Murel M. Ballard (1934). "o-Bromophenol". Org. Synth. 14: 14. doi:10.15227/orgsyn.014.0014.