Detonator (railway)

Last updated
This illustration from an 1882 Leslie's Monthly portrays an engineer (fireman) finding a torpedo on the track. Railroad torpedo.jpg
This illustration from an 1882 Leslie's Monthly portrays an engineer (fireman) finding a torpedo on the track.

A railway detonator (torpedo in North America) is a coin-sized device that is used as a loud warning signal to train drivers. It is placed on the top of the rail, usually secured with two lead straps, one on each side. When the wheel of the train passes over, it explodes, emitting a loud bang. It was invented in 1841 by English inventor Edward Alfred Cowper. [1] [2]

Contents

Uses

A torpedo on a rail Railroad torpedo with lead straps.jpg
A torpedo on a rail
A detonator on a railway line in Belgium Petard sncb.jpg
A detonator on a railway line in Belgium
South African example Track Detonator.JPG
South African example

Typical uses of detonators include:

On a high-speed line, detonators may need to be placed on both rails.

As with all explosives, detonators can become unstable over time and must, therefore, be replaced regularly.

They are triggered by pressure, rather than impact. This makes them safe during transport, as they normally cannot detonate in a bag or storage container.

In the United States

Upon hearing the noise of a torpedo exploding, the engineer reduces speed to 20 mph or less, not resuming its original speed until at least two miles beyond where it encountered the device. They were traditionally used in pairs to ensure that the sound registered with train crews. Torpedoes are essentially obsolete in the U.S. as soundproof construction of modern locomotive cabs renders them useless.

Quoting from the terminology book of the Brotherhood of Railroad Signalmen:

A torpedo is a device which is strapped to the top of a rail. When a train drives over the torpedo, it emits a very loud "bang" which can be heard over the noise of the engine, and signals the engineer to stop immediately. Torpedoes are generally placed by the flagman when protecting a train ahead. Torpedoes are about 2" × 2", red in color, about 3/4" high, and have two lead straps attached, which hold it to the rail. The torpedo has discs inside and are filled with detonating powder. The torpedo was invented about 1874.

In the United Kingdom

If a train unexpectedly explodes a detonator, the driver is required to stop immediately and investigate.

Detonators are usually deployed in groups of three, spaced 20 metres apart. When being used on electrified lines detonators must be placed on the rail which is furthest from the conductor rail (aka 'third rail'). [3] If a train is about to explode a detonator, personnel are required to stand at least 30 metres away from it and turn away. [4]

There are three types of detonator protection in the UK:

In Germany

Detonators were used where hazards had to be secured and there was no time for other signaling or if there was a danger that another signal might not be recognizable in time, for example due to fog or snow. To give the emergency signal, three detonators were placed in short succession, with the explosion of a single detonator being a stop signal. Since 1986 detonators have no longer been used on German railways. Only the ICE 3 trains and other locomotives that travel to France still have detonators on board because of French regulations.

In Taiwan

The use of detonators has been superseded by radio communications since the early 1950s. In November 2010, the Taiwan Railway Administration deployed 800 detonators for destruction on maintenance tracks. It received media attention, emitting sounds similar to the culturally significant firecrackers.

In Australia

Today known as audible track warning signals, [8] or audible track warning devices, detonators are used to attract the attention of train crews when track repairs or an obstruction are ahead, or when a hand signaller is acting for a signal. [8]

In Tanzania

Detonators are used to attract the attention of train crews in case of:

Detonator placer

Many mechanical signal boxes in the UK were equipped with detonator placers that placed detonators on a running line when a lever was operated. The levers were painted a striking white and black chevron pattern, pointing upwards for the "up" line, downwards for the "down" line. In some cases, the placers were fed from a cartridge holding a number of detonators.

Composition

According to Military and Civilian Pyrotechnics by Ellern, page 376, FORMULA 155 – Railroad Torpedo, is by mass: [9]

Garratt locomotives

The length of Garratt locomotives made the sound of a detonator hard to hear, so New South Wales 60 class locomotive had "sound pipes" to bring the noise of the explosion to the crew.

Related Research Articles

<span class="mw-page-title-main">Conductor (rail)</span> Train crew member

A conductor or guard is a train crew member responsible for operational and safety duties that do not involve actual operation of the train/locomotive. The conductor title is most common in North American railway operations, but the role is common worldwide under various job titles. In Commonwealth English, a conductor is also known as guard or train manager.

<span class="mw-page-title-main">Railway signalling</span> The principle of signals used to control railway traffic

Railway signalling (BE), also called railroad signaling (AE), is a system used to control the movement of railway traffic. Trains move on fixed rails, making them uniquely susceptible to collision. This susceptibility is exacerbated by the enormous weight and inertia of a train, which makes it difficult to quickly stop when encountering an obstacle. In the UK, the Regulation of Railways Act 1889 introduced a series of requirements on matters such as the implementation of interlocked block signalling and other safety measures as a direct result of the Armagh rail disaster in that year.

The Ladbroke Grove rail crash was a rail accident which occurred on 5 October 1999 at Ladbroke Grove in London, England, when two passenger trains collided almost head-on after one of them had passed a signal at danger. With 31 people killed and 417 injured, it was one of the worst rail accidents in 20th-century British history.

<span class="mw-page-title-main">Token (railway signalling)</span> Method of controlling single line railways

In railway signalling, a token is a physical object which a train driver is required to have or see before entering onto a particular section of single track. The token is clearly endorsed with the names of the section to which it belongs. A token system is more commonly used for single lines because of the greater risk of collision in the event of a mistake being made by a signaller or traincrew, than on double lines.

The Train Protection & Warning System (TPWS) is a train protection system used throughout the British passenger main-line railway network, and in Victoria, Australia.

<span class="mw-page-title-main">Signal passed at danger</span> Train passing stop signal without authority

A signal passed at danger (SPAD), known in the United States as a stop signal overrun (SSO) and in Canada as passing a stop signal, is an event on a railway where a train passes a stop signal without authority. This is also known as running a red.

<span class="mw-page-title-main">Southall rail crash</span> 1997 high-speed rail crash near London

The Southall rail crash occurred on 19 September 1997, on the Great Western Main Line at Southall, West London. An InterCity 125 high speed passenger train (HST) failed to slow down in response to warning signals and collided with a freight train crossing its path, causing seven deaths and 139 injuries.

<span class="mw-page-title-main">Automatic Warning System</span>

The Automatic Warning System (AWS) provides a train driver with an audible indication of whether the next signal they are approaching is clear or at caution. Depending on the upcoming signal state, the AWS will either produce a 'horn' sound, or a 'bell' sound. If the train driver fails to acknowledge a warning indication, an emergency brake application is initiated by the AWS. However if the driver correctly acknowledges the warning indication by pressing an acknowledgement button, then a visual 'sunflower' is displayed to the driver, as a reminder of the warning.

<span class="mw-page-title-main">Colwich rail crash</span> 1986 rail crash at Colwich Junction, England

The Colwich rail crash occurred on the evening of Friday 19 September 1986 at Colwich Junction, Staffordshire, England. It was significant in that it was a high speed collision between two packed express trains. One driver was killed, but no passengers died because of the great strength of the rolling stock involved, which included examples of Mk1, Mk2 and Mk3 coaches.

<span class="mw-page-title-main">Radio Electronic Token Block</span> Railway signalling system

Radio Electronic Token Block is a system of railway signalling used in the United Kingdom. It is a development of the physical token system for controlling traffic on single lines. The system is slightly similar to North American Direct Traffic Control, which unlike RETB does not have a cab display unit.

<span class="mw-page-title-main">UK railway signalling</span> Rail traffic control systems used in the United Kingdom

The railway signalling system used across the majority of the United Kingdom rail network uses lineside signals to control the movement and speed of trains.

<i>SimSig</i> Video game

SimSig is a mixed donationware and commercial Windows-based train simulator of modern railway signalling systems in Great Britain, from the point of view of a railway signaller. Users have also had success running SimSig on Linux using Wine.

<span class="mw-page-title-main">Rule 55</span> British railway operating rule

Rule 55 was an operating rule which applied on British railways in the 19th and 20th centuries. It was superseded by the modular rulebook following re-privatisation of the railways. It survives, very differently named: the driver of a train waiting at a signal on a running line must remind the signaller of its presence.

<span class="mw-page-title-main">Signalling block system</span>

Signalling block systems enable the safe and efficient operation of railways by preventing collisions between trains. The basic principle is that a track is broken up into a series of sections or "blocks". Only one train may occupy a block at a time, and the blocks are sized to allow a train to stop within them. That ensures that a train always has time to stop before getting dangerously close to another train on the same line. The block system is referred to in the UK as the method of working, in the US as the method of operation, and in Australia as safeworking.

<span class="mw-page-title-main">Automatic block signaling</span> A railroad communications system

Automatic block signaling (ABS), spelled automatic block signalling or called track circuit block (TCB) in the UK, is a railroad communications system that consists of a series of signals that divide a railway line into a series of sections, called blocks. The system controls the movement of trains between the blocks using automatic signals. ABS operation is designed to allow trains operating in the same direction to follow each other in a safe manner without risk of rear-end collision.

<span class="mw-page-title-main">Cab Secure Radio</span> British Rail driver/signaller communication system

Cab Secure Radio (CSR) was an in-cab analogue radiotelephone system formerly used on parts of the British railway network. Its main function was to provide a secure speech link between the train driver and the signaller which could not be overheard by other train drivers. In areas where CSR was used, it had to be the primary method of communication between driver and signaller, always being used in preference to the signal post telephone. CSR was replaced by the GSM-R digital system, forming the initial phase of rollout of ERTMS throughout the UK.

Belgian railway signalling is the signalling in effect on the Belgian rail network currently operated by Infrabel.

<span class="mw-page-title-main">2015 Wootton Bassett rail incident</span> Charter train passed a signal at danger

On 7 March 2015, a steam-hauled charter train passed a signal at danger and subsequently came to a stand across a high-speed mainline junction near Wootton Bassett Junction, Wiltshire, England. Another train, which had right of way, had passed through the junction 44 seconds earlier and no collision occurred nor was any damage done.

Route knowledge is one of the core skills together with train handling and a full understanding of railway rules, which the operating crew must possess in order to be able to operate a train safely.

<span class="mw-page-title-main">Level crossings in the United Kingdom</span> Overview of level crossings in the United Kingdom

There are around 6,000 level crossings in the United Kingdom, of which about 1,500 are public highway crossings. This number is gradually being reduced as the risk of accidents at level crossings is considered high. The director of the UK Railway Inspectorate commented in 2004 that "the use of level crossings contributes the greatest potential for catastrophic risk on the railways." The creation of new level crossings on the national network is banned, with bridges and tunnels being the more favoured options. The cost of making significant reductions, other than by simply closing the crossings, is substantial; some commentators argue that the money could be better spent. Some 5,000 crossings are user-worked crossings or footpaths with very low usage. The removal of crossings can improve train performance and lower accident rates, as some crossings have low rail speed limits enforced on them to protect road users. In fact, between 1845 and 1933, there was a 4 miles per hour (6.4 km/h) speed limit on level crossings of turnpike roads adjacent to stations for lines whose authorising act of Parliament had been consolidated in the Railways Clauses Consolidation Act 1845 although this limit was at least sometimes disregarded.

References

  1. Romanenko, A. G. (1978). "Hot-blast stoves – 120 years". Metallurgist. 22 (2): 134–136. doi:10.1007/BF01087865. S2CID   137658934.
  2. Minutes of Proceedings of the Institution of Civil Engineers, Volume 1. 1848.
  3. RSSB (December 2018). Rule Book: Train Driver Manual. Vol. General safety responsibilities and personal track safety for non-track workers. p. para 4.1 Personal Safety – Precautions that must be taken. GERT8000.
  4. RSSB (December 2018). Rule Book: Train Driver Manual. Vol. General safety responsibilities and personal track safety for non-track workers. p. para 1.10 General Instructions/Detonators. GERT8000.
  5. RSSB (December 2018). Rule Book: Train Driver Manual. Vol. Dealing with a train accident or train evacuation. p. para 4.31 Providing emergency protection. GERT8000.
  6. RSSB (December 2018). Rule Book: Train Driver Manual. Vol. Train stopped by train failure. p. para 1.5 Providing assistance protection. GERT8000.
  7. RSSB (December 2018). Rule Book: Train Driver Manual. Vol. T3 Possession of a running line for engineering work. p. para 1.5 Providing assistance protection. GERT8000.
  8. 1 2 "TA20 – ARTC Code of Practice for the Victorian Main Line Network" (PDF). artc.com.au. August 2011. Archived from the original (PDF) on 18 March 2012. Retrieved 20 November 2011.
  9. "Archived copy" (PDF). Archived from the original (PDF) on 2016-05-07. Retrieved 2016-01-20.{{cite web}}: CS1 maint: archived copy as title (link)