Differential invariant

Last updated

In mathematics, a differential invariant is an invariant for the action of a Lie group on a space that involves the derivatives of graphs of functions in the space. Differential invariants are fundamental in projective differential geometry, and the curvature is often studied from this point of view. [1] Differential invariants were introduced in special cases by Sophus Lie in the early 1880s and studied by Georges Henri Halphen at the same time. Lie (1884) was the first general work on differential invariants, and established the relationship between differential invariants, invariant differential equations, and invariant differential operators.

Contents

Differential invariants are contrasted with geometric invariants. Whereas differential invariants can involve a distinguished choice of independent variables (or a parameterization), geometric invariants do not. The moving frames method, which is a refinement of Élie Cartan's method of moving frames, gives several new powerful tools for finding and classifying the equivalence and symmetry properties of submanifolds, differential invariants, and their syzygies. Although, the moving frames method is less general than Lie's methods of differential invariants, it always yields invariants of the geometrical kind.

Definition

The simplest case is for differential invariants for one independent variable x and one dependent variable y. Let G be a Lie group acting on R2. Then G also acts, locally, on the space of all graphs of the form y = ƒ(x). Roughly speaking, a k-th order differential invariant is a function

depending on y and its first k derivatives with respect to x, that is invariant under the action of the group.

The group can act on the higher-order derivatives in a nontrivial manner that requires computing the prolongation of the group action. The action of G on the first derivative, for instance, is such that the chain rule continues to hold: if

then

Similar considerations apply for the computation of higher prolongations. This method of computing the prolongation is impractical, however, and it is much simpler to work infinitesimally at the level of Lie algebras and the Lie derivative along the G action.

More generally, differential invariants can be considered for mappings from any smooth manifold X into another smooth manifold Y for a Lie group acting on the Cartesian product X×Y. The graph of a mapping X  Y is a submanifold of X×Y that is everywhere transverse to the fibers over X. The group G acts, locally, on the space of such graphs, and induces an action on the k-th prolongation Y(k) consisting of graphs passing through each point modulo the relation of k-th order contact. A differential invariant is a function on Y(k) that is invariant under the prolongation of the group action.

Applications

See also

Notes

  1. Guggenheimer 1977
  2. Olver 1995 , Chapter 3
  3. Olver, Peter; Sapiro, Guillermo; Tannenbaum, Allen (1994), "Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach", Geometry-Driven Diffusion in Computer Vision, Computational Imaging and Vision, vol. 1, Dordrecht: Springer, pp. 255–306, doi:10.1007/978-94-017-1699-4_11, hdl: 1721.1/3348 , ISBN   90-481-4461-2

Related Research Articles

<span class="mw-page-title-main">Group theory</span> Branch of mathematics that studies the properties of groups

In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.

<span class="mw-page-title-main">Partial differential equation</span> Type of differential equation

In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.

<span class="mw-page-title-main">Riemannian manifold</span> Smooth manifold with an inner product on each tangent space

In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the -sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifolds. Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them.

In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

<span class="mw-page-title-main">Differential operator</span> Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

<span class="mw-page-title-main">Moving frame</span> Generalization of an ordered basis of a vector space

In mathematics, a moving frame is a flexible generalization of the notion of an ordered basis of a vector space often used to study the extrinsic differential geometry of smooth manifolds embedded in a homogeneous space.

<span class="mw-page-title-main">Contact geometry</span> Branch of geometry

In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem.

In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions.

In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the phase space from Hamiltonian mechanics.

In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions.

In mathematics, the Maurer–Cartan form for a Lie group G is a distinguished differential one-form on G that carries the basic infinitesimal information about the structure of G. It was much used by Élie Cartan as a basic ingredient of his method of moving frames, and bears his name together with that of Ludwig Maurer.

In mathematics, certain systems of partial differential equations are usefully formulated, from the point of view of their underlying geometric and algebraic structure, in terms of a system of differential forms. The idea is to take advantage of the way a differential form restricts to a submanifold, and the fact that this restriction is compatible with the exterior derivative. This is one possible approach to certain over-determined systems, for example, including Lax pairs of integrable systems. A Pfaffian system is specified by 1-forms alone, but the theory includes other types of example of differential system. To elaborate, a Pfaffian system is a set of 1-forms on a smooth manifold.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

In mathematics, Cartan's equivalence method is a technique in differential geometry for determining whether two geometrical structures are the same up to a diffeomorphism. For example, if M and N are two Riemannian manifolds with metrics g and h, respectively, when is there a diffeomorphism

In mathematics and theoretical physics, an invariant differential operator is a kind of mathematical map from some objects to an object of similar type. These objects are typically functions on , functions on a manifold, vector valued functions, vector fields, or, more generally, sections of a vector bundle.

In the theory of differential forms, a differential idealI is an algebraic ideal in the ring of smooth differential forms on a smooth manifold, in other words a graded ideal in the sense of ring theory, that is further closed under exterior differentiation d, meaning that for any form α in I, the exterior derivative dα is also in I.

<span class="mw-page-title-main">Differential geometry of surfaces</span> The mathematics of smooth surfaces

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric.

In mathematics, a diffiety is a geometrical object which plays the same role in the modern theory of partial differential equations that algebraic varieties play for algebraic equations, that is, to encode the space of solutions in a more conceptual way. The term was coined in 1984 by Alexandre Mikhailovich Vinogradov as portmanteau from differential variety.

<span class="mw-page-title-main">Lie point symmetry</span>

Lie point symmetry is a concept in advanced mathematics. Towards the end of the nineteenth century, Sophus Lie introduced the notion of Lie group in order to study the solutions of ordinary differential equations (ODEs). He showed the following main property: the order of an ordinary differential equation can be reduced by one if it is invariant under one-parameter Lie group of point transformations. This observation unified and extended the available integration techniques. Lie devoted the remainder of his mathematical career to developing these continuous groups that have now an impact on many areas of mathematically based sciences. The applications of Lie groups to differential systems were mainly established by Lie and Emmy Noether, and then advocated by Élie Cartan.

The equivalence moving frames method was introduced by E. Cartan to solve the equivalence problems on submanifolds under the action of a transformation group. In 1974, P. A. Griffiths has paid to the uniqueness and existence problem on geometric differential equations by using the Cartan method of Lie groups and moving frames. Later on, in the 1990s, Fels and Olver have presented the moving co-frame method as a new formulation of the classical Cartan's method for finite-dimensional Lie group actions on manifolds. In the last two decades, the moving frames method has been developed in the general algorithmic and equivariant framework which gives several new powerful tools for finding and classifying the equivalence and symmetry properties of submanifolds, differential invariants, and their syzygies.

References