Dip soldering

Last updated
Dip soldering apparatus. Dipsoldering1.jpg
Dip soldering apparatus.

Dip soldering is a small-scale soldering process by which electronic components are soldered to a printed circuit board (PCB) to form an electronic assembly. The solder wets to the exposed metallic areas of the board (those not protected with solder mask), creating a reliable mechanical and electrical connection.

Soldering process of joining metal pieces with heated filler metal

Soldering is a process in which two or more items are joined together by melting and putting a filler metal (solder) into the joint, the filler metal having a lower melting point than the adjoining metal. Unlike welding, soldering does not involve melting the work pieces. In brazing, the filler metal melts at a higher temperature, but the work piece metal does not melt. In the past, nearly all solders contained lead, but environmental and health concerns have increasingly dictated use of lead-free alloys for electronics and plumbing purposes.

Electronic component basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields

An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components.

Printed circuit board board to support and connect electronic components

A printed circuit board (PCB) mechanically supports and electrically connects electronic components or electrical components using conductive tracks, pads and other features etched from one or more sheet layers of copper laminated onto and/or between sheet layers of a non-conductive substrate. Components are generally soldered onto the PCB to both electrically connect and mechanically fasten them to it.


Dip soldering is used for both through-hole printed circuit assemblies, and surface mount. It is one of the cheapest methods to solder and is extensively used in the small scale industries of developing countries .

Through-hole technology mounting scheme used for electronic components that involves the use of leads on the components that are inserted into holes drilled in printed circuit boards and soldered to pads on the opposite side manually or by automated insertion mount machines

Through-hole technology, refers to the mounting scheme used for electronic components that involves the use of leads on the components that are inserted into holes drilled in printed circuit boards (PCB) and soldered to pads on the opposite side either by manual assembly or by the use of automated insertion mount machines.

Surface-mount technology method for producing electronic circuits

Surface-mount technology (SMT) is a method for producing electronic circuits in which the components are mounted or placed directly onto the surface of printed circuit boards (PCBs). An electronic device so made is called a surface-mount device (SMD). In industry, it has largely replaced the through-hole technology construction method of fitting components with wire leads into holes in the circuit board. Both technologies can be used on the same board, with the through-hole technology used for components not suitable for surface mounting such as large transformers and heat-sinked power semiconductors.

Dip soldering is the manual equivalent of automated wave soldering. The apparatus required is just a small tank containing molten solder. A PCB with mounted components is dipped manually into the tank so that the molten solder sticks to the exposed metallic areas of the board.

Wave soldering

Wave soldering is a bulk soldering process used in the manufacture of printed circuit boards. The circuit board is passed over a pan of molten solder in which a pump produces an upwelling of solder that looks like a standing wave. As the circuit board makes contact with this wave, the components become soldered to the board. Wave soldering is used for both through-hole printed circuit assemblies, and surface mount. In the latter case, the components are glued onto the surface of a printed circuit board (PCB) by placement equipment, before being run through the molten solder wave. Wave soldering is mainly used in soldering of through hole components.

Dip solder process

Dip soldering is accomplished by submerging parts to be joined into a molten solder bath. Thus, all components surfaces are coated with filler metal. Solders have low surface tension and high wetting capability. There are many types of solders, each used for different applications. Such as Lead-Silver for strength at higher than room temperature. Tin-Lead is used for General Purpose; Tin-Zinc is used for Aluminum; Cadmium-Silver is used for strength at high temperatures; Zinc-Aluminum is used for Aluminum and corrosion resistance; Tin-Silver and Tin-Bismuth is used for Electronics. Because of the toxicity of lead, lead-free solders are being developed and more widely used. The molten bath can be any suitable filler metal, but the selection is usually confined to the lower melting point elements. The most common dip soldering operations use zinc-aluminum and tin-lead solders.
Solder pot metal - Cast iron or steel,electrically heated.
Bath temperature - 220 deg. Celsius to 260 deg.Celsius (for binary tin-lead alloys)
Bath temperature - 350 deg.Celsius to 400 deg. Celsius (for lead-free alloys)
Solder composition - 60% Sn(tin),40% Pb(lead) or eutectic alloy.

Process schematic

The workpieces to be joined are treated with cleaning flux. Then the workpiece is mounted in the workholding device and immersed in the molten solder for 2 to 12 seconds. The workpiece is often agitated to aid the flow of the solder. The workpiece holder must allow an inclination of 3 to 5 deg. so that the solder may run off to insure a smooth finish.

Workpiece geometry

This process is generally limited to all metal work pieces, although other materials, such as circuit boards can also tolerate momentary contact with the hot molten solder without damage.

Setup and equipment

There is not much equipment or setup for this process, all that is needed is the solder pot with its temperature control panel, the bath of molten solder, and the work holding device. Usually the work holding device is custom made for each respective workpiece for either manual or automated dipping. [1]


Some materials are easier to solder than others. Copper, silver, and gold are easy to solder. Iron and Nickel are a little more difficult. Titanium, magnesium, cast irons, steels, ceramics, and graphites are hard to solder. However, if they are first plated they are more easily soldered. An example of this is tin-plating, in which a steel is sheet coated with tin so that it can be soldered more easily.


Dip Soldering is used extensively in the electronics industry. However, they have a limited service use at elevated temperatures because of the low melting point of the filler metals. Soldered materials do not have much strength and are therefore not used for load-bearing. [2]

Related Research Articles

Hot-dip galvanization

Hot-dip galvanization is a form of galvanization. It is the process of coating iron and steel with zinc, which alloys with the surface of the base metal when immersing the metal in a bath of molten zinc at a temperature of around 840 °F (449 °C). When exposed to the atmosphere, the pure zinc (Zn) reacts with oxygen (O2) to form zinc oxide (ZnO), which further reacts with carbon dioxide (CO2) to form zinc carbonate (ZnCO3), a usually dull grey, fairly strong material that protects the steel underneath from further corrosion in many circumstances. Galvanized steel is widely used in applications where corrosion resistance is needed without the cost of stainless steel, and is considered superior in terms of cost and life-cycle. It can be identified by the crystallization patterning on the surface (often called a "spangle").

Metalworking production and processing of shaped workpieces made of metals

Metalworking is the process of working with metals to create individual parts, assemblies, or large-scale structures. The term covers a wide range of work from large ships and bridges to precise engine parts and delicate jewelry. It therefore includes a correspondingly wide range of skills, processes, and tools.

Brazing metal-joining technique by high-temperature molten metal filling

Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, the filler metal having a lower melting point than the adjoining metal.

Flux (metallurgy) type of chemicals used in metallurgy

In metallurgy, a flux is a chemical cleaning agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.


In electronics, desoldering is the removal of solder and components from a circuit board for troubleshooting, repair, replacement, and salvage.

Plating is a surface covering in which a metal is deposited on a conductive surface. Plating has been done for hundreds of years; it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderability, to harden, to improve wearability, to reduce friction, to improve paint adhesion, to alter conductivity, to improve IR reflectivity, for radiation shielding, and for other purposes. Jewelry typically uses plating to give a silver or gold finish.

Reflow soldering

Reflow soldering is a process in which a solder paste is used to temporarily attach one or thousands of tiny electrical components to their contact pads, after which the entire assembly is subjected to controlled heat. The solder paste reflows in a molten state, creating permanent solder joints. Heating may be accomplished by passing the assembly through a reflow oven or under an infrared lamp or by soldering individual joints [unconventionally] with a desoldering hot air pencil.

Gas tungsten arc welding

Gas tungsten arc welding (GTAW), also known as tungsten inert gas (TIG) welding, is an arc welding process that uses a non-consumable tungsten electrode to produce the weld. The weld area and electrode is protected from oxidation or other atmospheric contamination by an inert shielding gas, and a filler metal is normally used, though some welds, known as autogenous welds, do not require it. A constant-current welding power supply produces electrical energy, which is conducted across the arc through a column of highly ionized gas and metal vapors known as a plasma.

Rework (electronics) term for the refinishing operation or repair of an electronic printed circuit board (PCB) assembly

Rework is the term for the refinishing operation or repair of an electronic printed circuit board (PCB) assembly, usually involving desoldering and re-soldering of surface-mounted electronic components (SMD). Mass processing techniques are not applicable to single device repair or replacement, and specialized manual techniques by expert personnel using appropriate equipment are required to replace defective components; area array packages such as ball grid array (BGA) devices particularly require expertise and appropriate tools. A hot air gun or hot air station is used to heat devices and melt solder, and specialised tools are used to pick up and position often tiny components.

The solderability of a substrate is a measure of the ease with which a soldered joint can be made to that material. Good solderability requires wetting of the substrate by the solder.

A filler metal is a metal added in the making of a joint through welding, brazing, or soldering.

Selective soldering


Architectural metals

Metals used for architectural purposes include lead, for water pipes, roofing, and windows; tin, formed into tinplate; zinc, copper and aluminium, in a range of applications including roofing and decoration; and iron, which has structural and other uses in the form of cast iron or wrought iron, or made into steel. Metal alloys used in building include bronze ; brass ; monel metal and nickel silver, mainly consisting of nickel and copper; and stainless steel, with important components of nickel and chromium.

Black oxide or blackening is a conversion coating for ferrous materials, stainless steel, copper and copper based alloys, zinc, powdered metals, and silver solder. It is used to add mild corrosion resistance, for appearance and to minimize light reflection. To achieve maximal corrosion resistance the black oxide must be impregnated with oil or wax. One of its advantages over other coatings is its minimal buildup.

Tin-silver-copper, is a lead-free (Pb-free) alloy commonly used for electronic solder. The tin-silver-copper alloy has been the prevailing alloy system used to replace tin-lead because it is near eutectic, with adequate thermal fatigue properties, strength, and wettability. Lead-free solder is gaining much attention as the environmental effects of lead in industrial products is recognized, and as a result of Europe’s RoHS legislation to remove lead and other hazardous materials from electronics. Japanese electronics companies have also looked at Pb-free solder for its industrial advantages.


  1. Robert H. Todd and Dell K. Allen and Leo Alting, Manufacturing Processes Reference Guide
  2. Soldering of Non-Ferrous Alloys

Further reading