Dipankar Home

Last updated

Dipankar Home
Born11 November 1955
CitizenshipIndia Flag of India.svg
Awards
  • Homi Bhabha Fellowship
  • Jawaharlal Nehru Fellowship
  • B. M. Birla Science Prize
  • Darshan Vigyan Samman
  • INSA Medal for Young Scientists
Scientific career
Fields Quantum Physics
Institutions Bose Institute
Website www.dipankarhome.com

Dipankar Home (born 11 November 1955) is an Indian theoretical physicist at Bose Institute, Kolkata. He works on the fundamental aspects of quantum mechanics, including quantum entanglement and Quantum communication. He is co-author with Partha Ghose of the popular book Riddles in your Teacup - Fun with Everyday Scientific Puzzles. [1]

Contents

Research

Dipankar's research interests are in the following areas:

Research highlights

Dipankar Home is among the earliest Indian researchers initiating studies on Foundations of Quantum Mechanics that have gradually become linked with experiments, giving rise to the currently vibrant area of Quantum Information (QI). His manifold contributions include two distinctive Research-level Books: "Conceptual Foundations of Quantum Physics – An Overview from Modern Perspectives" (Plenum) and "Einstein’s Struggles with Quantum Theory: A Reappraisal" (Springer) with Forewords by Anthony Leggett and Roger Penrose respectively (Appendix A), while some of the significant works with his collaborators are:

(a) An ingenious idea was formulated by invoking quantum indistinguishability leading to an arbitrarily efficient resource for producing entanglement, applicable for spin-like variables of any two identical bosons/fermions. [2] Entanglement being at the core of QI, this work has stimulated applications of Quantum Statistics in QI processing, apart from being used in studies on free electron Quantum Computation.

(b) A hitherto unexplored use of intraparticle path-spin entanglement [3] was conceived for empirically verifying Quantum Contextuality, subsequently tested by the Vienna group, [4] followed recently by suggesting its information-theoretic applications. [5]

(c) A widely cited analysis of the Quantum Zeno effect (Annals of Physics 258, 237 (1997)), preceded by the formulation of a unified framework for such effects (Physics Letters A 173, 327 (1993)).

(d) Proposed a novel experiment to show simultaneous wave and particle – like behaviour in the same setup using optical tunneling of single photon states (Physics Letters A 153, 403 (1991)), subsequently tested (Physics Letters A 168, 1 (1992)) at Hamamatsu Photonics laboratory, Japan.

(e) Conceived an innovative biomolecular example to probe the Quantum Measurement Problem (Physical Review Letters 76, 2836 (1996)), preceded by a demonstration of the quantum mechanical violation of classical realism for multiparticle systems even under strong macroscopic limiting conditions (Physical Review A 52, 4959 (1995)).

Home's research works have been cited in 19 relevant technical/popular books (Appendix B), with the total citation number of his works about 850 (ISI Web index).

Publications

Books
Articles

Home has 98 peer-reviewed published articles listed in Scopus. The most cited of them is Home, D., Whitaker, M.A.B., "A conceptual analysis of quantum zeno; paradox, measurement, and experiment" (1997) Annals of Physics, 258 (2), pp. 237–285.

Awards and recognition

Related Research Articles

<span class="mw-page-title-main">Einstein–Podolsky–Rosen paradox</span> Early and influential critique leveled against quantum mechanics

The Einstein–Podolsky–Rosen (EPR) paradox is a thought experiment proposed by physicists Albert Einstein, Boris Podolsky and Nathan Rosen which argues that the description of physical reality provided by quantum mechanics is incomplete. In a 1935 paper titled "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?", they argued for the existence of "elements of reality" that were not part of quantum theory, and speculated that it should be possible to construct a theory containing these hidden variables. Resolutions of the paradox have important implications for the interpretation of quantum mechanics.

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, such as neutron stars.

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between measurements of quantum subsystems, even when spatially separated

Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

<span class="mw-page-title-main">Schrödinger's cat</span> Thought experiment devised by the physicist Erwin Schrödinger

In quantum mechanics, Schrödinger's cat is a thought experiment that illustrates a paradox of quantum superposition. In the thought experiment, a hypothetical cat may be considered simultaneously both alive and dead, while it is unobserved in a closed box, as a result of its fate being linked to a random subatomic event that may or may not occur. This thought experiment was devised by physicist Erwin Schrödinger in 1935 in a discussion with Albert Einstein to illustrate what Schrödinger saw as the problems of the Copenhagen interpretation of quantum mechanics.

The de Broglie–Bohm theory, also known as the pilot wave theory, Bohmian mechanics, Bohm's interpretation, and the causal interpretation, is an interpretation of quantum mechanics. In addition to the wavefunction, it also postulates an actual configuration of particles exists even when unobserved. The evolution over time of the configuration of all particles is defined by a guiding equation. The evolution of the wave function over time is given by the Schrödinger equation. The theory is named after Louis de Broglie (1892–1987) and David Bohm (1917–1992).

An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics might correspond to experienced reality. Although quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily broad range of experiments, there exist a number of contending schools of thought over their interpretation. These views on interpretation differ on such fundamental questions as whether quantum mechanics is deterministic or stochastic, local or non-local, which elements of quantum mechanics can be considered real, and what the nature of measurement is, among other matters.

Bell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories given some basic assumptions about the nature of measurement. "Local" here refers to the principle of locality, the idea that a particle can only be influenced by its immediate surroundings, and that interactions mediated by physical fields cannot propagate faster than the speed of light. "Hidden variables" are putative properties of quantum particles that are not included in the theory but nevertheless affect the outcome of experiments. In the words of physicist John Stewart Bell, for whom this family of results is named, "If [a hidden-variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum mechanics it will not be local."

<span class="mw-page-title-main">Quantum Zeno effect</span> Quantum measurement phenomenon

The quantum Zeno effect is a feature of quantum-mechanical systems allowing a particle's time evolution to be slowed down by measuring it frequently enough with respect to some chosen measurement setting.

A Bell test, also known as Bell inequality test or Bell experiment, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Albert Einstein's concept of local realism. Named for John Stewart Bell, the experiments test whether or not the real world satisfies local realism, which requires the presence of some additional local variables to explain the behavior of particles like photons and electrons. To date, all Bell tests have found that the hypothesis of local hidden variables is inconsistent with the way that physical systems behave.

The free will theorem of John H. Conway and Simon B. Kochen states that if we have a free will in the sense that our choices are not a function of the past, then, subject to certain assumptions, so must some elementary particles. Conway and Kochen's paper was published in Foundations of Physics in 2006. In 2009, the authors published a stronger version of the theorem in the Notices of the American Mathematical Society. Later, in 2017, Kochen elaborated some details.

Abner Eliezer Shimony was an American physicist and philosopher. He specialized in quantum theory and philosophy of science. As a physicist, he concentrated on the interaction between relativity theory and quantum mechanics. He authored many works and research on complementarity in quantum entanglement as well as multiparticle quantum interferometry, both relating to quantum coherence. He authored research articles and books on the foundations of quantum mechanics. He received the 1996 Lakatos Prize for his work in philosophy of science.

Objective-collapse theories, also known as models of spontaneous wave function collapse or dynamical reduction models, are proposed solutions to the measurement problem in quantum mechanics. As with other theories called interpretations of quantum mechanics, they are possible explanations of why and how quantum measurements always give definite outcomes, not a superposition of them as predicted by the Schrödinger equation, and more generally how the classical world emerges from quantum theory. The fundamental idea is that the unitary evolution of the wave function describing the state of a quantum system is approximate. It works well for microscopic systems, but progressively loses its validity when the mass / complexity of the system increases.

Basil J. Hiley, is a British quantum physicist and professor emeritus of the University of London.

<span class="mw-page-title-main">Ravi Gomatam</span>

Ravi Veeraraghavan Gomatam is the director of Bhaktivedanta Institute and the newly formed Institute of Semantic Information Sciences and Technology. He teaches graduate-level courses at these institutes. He was an adjunct professor at Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India (1993–2015).

<span class="mw-page-title-main">Partha Ghose</span>

Partha GhoseFNASc is an Indian physicist, author, philosopher, musician and former professor at the S.N. Bose National Centre for Basic Sciences in Kolkata. He is the former Chairman of Satyajit Ray Film and Television Institute, Kolkata and a member of the Board of Trustees of the Academy of Fine Arts, Kolkata.

The von Neumann–Wigner interpretation, also described as "consciousness causes collapse", is an interpretation of quantum mechanics in which consciousness is postulated to be necessary for the completion of the process of quantum measurement.

In theoretical physics, the problem of time is a conceptual conflict between general relativity and quantum mechanics in that quantum mechanics regards the flow of time as universal and absolute, whereas general relativity regards the flow of time as malleable and relative. This problem raises the question of what time really is in a physical sense and whether it is truly a real, distinct phenomenon. It also involves the related question of why time seems to flow in a single direction, despite the fact that no known physical laws at the microscopic level seem to require a single direction. For macroscopic systems the directionality of time is directly linked to first principles such as the second law of thermodynamics.

<span class="mw-page-title-main">Sandu Popescu</span> British physicist

Sandu Popescu is a Romanian-British physicist working in the foundations of quantum mechanics and quantum information.

Spin squeezing is a quantum process that decreases the variance of one of the angular momentum components in an ensemble of particles with a spin. The quantum states obtained are called spin squeezed states. Such states can be used for quantum metrology, as they can provide a better precision for estimating a rotation angle than classical interferometers.

Michael A. Horne was an American quantum physicist, famous for his work on the foundations of quantum mechanics.

References

  1. Riddles in your teacup fun with everyday scientific puzzles
  2. S. Bose; D. Home. (2002). "Generic Entanglement Generation, Quantum Statistics, and Complementarity". Phys. Rev. Lett. 88 (5): 050401. arXiv: quant-ph/0101093 . Bibcode:2002PhRvL..88e0401B. doi:10.1103/PhysRevLett.88.050401. PMID   11863706. S2CID   15438036.
  3. S. Basu; S. Bandyopadhyay G. Kar; D. Home. (2001). "Bell's inequality for a single spin-1/2 particle and quantum contextuality". Physics Letters A. 279 (5–6): 281–286. arXiv: quant-ph/9907030 . Bibcode:2001PhLA..279..281B. doi:10.1016/S0375-9601(00)00747-7. S2CID   6422738.
  4. Yuji Hasegawa, Rudolf Loidl1, Gerald Badurek, Matthias Baron and Helmut Rauch. (2003). "Violation of a Bell-like inequality in single-neutron interferometry". Nature. 425 (6953): 45–48. Bibcode:2003Natur.425...45H. doi:10.1038/nature01881. PMID   12955134. S2CID   39583445.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. S. Adhikari; A. S. Majumdar; D. Home; A. K. Pan. (2010). "Swapping path-spin intraparticle entanglement onto spin-spin interparticle entanglement". Europhysics Letters. 89 (1): 10005. arXiv: 0909.0425 . Bibcode:2010EL.....8910005A. doi:10.1209/0295-5075/89/10005. S2CID   119210778.