Direct-view bistable storage tube (DVBST) was an acronym used by Tektronix to describe their line of storage tubes. These were cathode-ray tubes (CRT) that stored information written to them using an analog technique inherent in the CRT and based upon the secondary emission of electrons from the phosphor screen itself. The resulting image was visible in the continuously glowing patterns on the face of the CRT.
DVBST technology was anticipated by Andrew Haeff of the US Naval Research Laboratory, and by Williams and Kilburn in the late 1940s. Tek's (Tektronix) Robert H. Anderson refined Haeff's concepts in the late 1950s to produce a reliable and simple DVST.
The DVBST implements two electron guns: a "flood gun" and a "writing gun". The writing gun scans across a wire grid, charging the grid to create the negative image. The flood gun then floods the grid. Previously charged areas repel the incoming electrons so that electrons only pass through the grid to the phosphor in those areas not previously charged.
The technology offered several advantages and disadvantages.
Tektronix-made DVBSTs were used for analog oscilloscopes (first in the 564 oscilloscope, then the type 601 monitor (1968), the 611 monitor, the 7313 and 7514 plug-in mainframe oscilloscope, all from Tektronix) and for computer terminals such as the archetypal Tek 4010 and its several successors including the Tektronix 4014. Portions of the screen are individually written-to by a conventional electron beam gun, and "flooded" by a wide, low velocity electron gun. Erasure required erasing the entire screen in a bright flash of green light, leading to the nickname "the mean green flashin' machine".
Some DVBST implementations also allowed the "write-through" of a small amount of dynamically refreshed, non-stored data. This allowed the display of cursors, graphic elements under construction, and the like on computer terminals.
An alternate solution for storage tubes was the "dark trace" CRT, also known as the skiatron. This CRT replaced the conventional light-emitting phosphor layer on the face of the tube screen with a scotophor such as potassium chloride (KCl). KCl has the property that when a crystal is struck by an electron beam, that spot would change from translucent white to a dark magenta color. By backlighting such a CRT with a white or green circular fluorescent lamp, the resulting image would appear as black information against a green background or as magenta information against a white background. A benefit, aside from the semi-permanent storage of the displayed image, is that the brightness of the resultant display is only limited by the illumination source and optics.
The image would be retained until erased by flooding the scotophor with a high-intensity infrared light or by electro-thermal heating. Using conventional deflection and raster formation circuitry, a bi-level image could be created on the membrane and retained even when power was removed from the CRT. By using an array of dots, say 8 × 8, a larger pixel could be formed to represent 64 gray levels. One such device, the D36 Image Display, was made by DICOMED Corporation and a technical paper was presented at the 1972 Electro-Optical Conference in Geneva, Switzerland.
A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms on an oscilloscope, a frame of video on an analog television set (TV), digital raster graphics on a computer monitor, or other phenomena like radar targets. A CRT in a TV is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer. The term cathode ray was used to describe electron beams when they were first discovered, before it was understood that what was emitted from the cathode was a beam of electrons.
The Selectron was an early form of digital computer memory developed by Jan A. Rajchman and his group at the Radio Corporation of America (RCA) under the direction of Vladimir K. Zworykin. It was a vacuum tube that stored digital data as electrostatic charges using technology similar to the Williams tube storage device. The team was never able to produce a commercially viable form of Selectron before magnetic-core memory became almost universal.
Tektronix, Inc., historically widely known as Tek, is an American company best known for manufacturing test and measurement devices such as oscilloscopes, logic analyzers, and video and mobile test protocol equipment. Originally an independent company, it is now a subsidiary of Fortive, a spinoff from Danaher Corporation.
The Tektronix 4010 series was a family of text-and-graphics computer terminals based on storage-tube technology created by Tektronix. Several members of the family were introduced during the 1970s, the best known being the 11-inch 4010 and 19-inch 4014, along with the less popular 25-inch 4016. They were widely used in the computer-aided design market in the 1970s and early 1980s.
Storage tubes are a class of cathode-ray tubes (CRTs) that are designed to hold an image for a long period of time, typically as long as power is supplied to the tube.
A surface-conduction electron-emitter display (SED) is a display technology for flat panel displays developed by a number of companies. SEDs uses nanoscopic-scale electron emitters to energize colored phosphors and produce an image. In a general sense, a SED consists of a matrix of tiny cathode-ray tubes, each "tube" forming a single sub-pixel on the screen, grouped in threes to form red-green-blue (RGB) pixels. SEDs combine the advantages of CRTs, namely their high contrast ratios, wide viewing angles, and very fast response times, with the packaging advantages of LCD and other flat panel displays.
Cromaclear is a trademark for CRT technology used by NEC during the mid to late-90s. This adopted the slotted shadow mask and in-line electron gun pioneered by the 1966 GE Porta-Color and used by most then-current television tubes to computer monitor use. It was claimed that Cromaclear could offer the image clarity and sharpness of the Trinitron and Diamondtron aperture grille CRTs without the disadvantages e.g. expense and the horizontal damping wires.
The penetron, short for penetration tube, is a type of limited-color television used in some military applications. Unlike a conventional color television, the penetron produces a limited color gamut, typically two colors and their combination. Penetrons, and other military-only cathode ray tubes (CRTs), have been replaced by LCDs in modern designs.
Dicomed was a computer graphics technology company founded in 1969 and based in Minneapolis. In the early 1970s it became a leading manufacturer of precision color film recorders such as the D47 and D48.
A vector monitor, vector display, or calligraphic display is a display device used for computer graphics up through the 1970s. It is a type of CRT, similar to that of an early oscilloscope. In a vector display, the image is composed of drawn lines rather than a grid of glowing pixels as in raster graphics. The electron beam follows an arbitrary path, tracing the connected sloped lines rather than following the same horizontal raster path for all images. The beam skips over dark areas of the image without visiting their points.
An oscilloscope is a type of electronic test instrument that graphically displays varying voltages of one or more signals as a function of time. Their main purpose is capturing information on electrical signals for debugging, analysis, or characterization. The displayed waveform can then be analyzed for properties such as amplitude, frequency, rise time, time interval, distortion, and others. Originally, calculation of these values required manually measuring the waveform against the scales built into the screen of the instrument. Modern digital instruments may calculate and display these properties directly.
The Chromatron is a color television cathode ray tube design invented by Nobel prize-winner Ernest Lawrence and developed commercially by Paramount Pictures, Sony, Litton Industries and others. The Chromatron offered brighter images than conventional color television systems using a shadow mask, but a host of development problems kept it from being widely used in spite of years of development. Sony eventually abandoned it in favor of their famous Trinitron system using an aperture grille.
Electrically operated display devices have developed from electromechanical systems for display of text, up to all-electronic devices capable of full-motion 3D color graphic displays. Electromagnetic devices, using a solenoid coil to control a visible flag or flap, were the earliest type, and were used for text displays such as stock market prices and arrival/departure display times. The cathode ray tube was the workhorse of text and video display technology for several decades until being displaced by plasma, liquid crystal (LCD), and solid-state devices such as thin-film transistors (TFTs), LEDs and OLEDs. With the advent of metal–oxide–semiconductor field-effect transistors (MOSFETs), integrated circuit (IC) chips, microprocessors, and microelectronic devices, many more individual picture elements ("pixels") could be incorporated into one display device, allowing graphic displays and video.
The skiatron is a type of cathode ray tube (CRT) that replaces the conventional phosphor with some type of scotophor, typically potassium chloride.
A scotophor is a material showing reversible darkening and bleaching when subjected to certain types of radiation. The name means dark bearer, in contrast to phosphor, which means light bearer. Scotophors show tenebrescence and darken when subjected to an intense radiation such as sunlight. Minerals showing such behavior include hackmanite sodalite, spodumene and tugtupite. Some pure alkali halides also show such behavior.
This is a subdivision of the Oscilloscope article, discussing the various types and models of oscilloscopes in greater detail.
The history of the oscilloscope was fundamental to science because an oscilloscope is a device for viewing waveform oscillations, as of electrical voltage or current, in order to measure frequency and other wave characteristics. This was important in developing electromagnetic theory. The first recordings of waveforms were with a galvanometer coupled to a mechanical drawing system dating from the second decade of the 19th century. The modern day digital oscilloscope is a consequence of multiple generations of development of the oscillograph, cathode-ray tubes, analog oscilloscopes, and digital electronics.
Tektronix vintage analog oscilloscopes technologies and evolution. The company was founded in the mid-1940s to produce oscilloscopes.
A time base generator is a special type of function generator, an electronic circuit that generates a varying voltage to produce a particular waveform. Time base generators produce very high frequency sawtooth waves specifically designed to deflect the beam of a cathode ray tube (CRT) smoothly across the face of the tube and then return it to its starting position.
A deflection yoke is a kind of magnetic lens, used in cathode ray tubes to scan the electron beam both vertically and horizontally over the whole screen.