In astrophysics, Dirichlet's ellipsoidal problem, named after Peter Gustav Lejeune Dirichlet, asks under what conditions there can exist an ellipsoidal configuration at all times of a homogeneous rotating fluid mass in which the motion, in an inertial frame, is a linear function of the coordinates. Dirichlet's basic idea was to reduce Euler equations to a system of ordinary differential equations such that the position of a fluid particle in a homogeneous ellipsoid at any time is a linear and homogeneous function of initial position of the fluid particle, using Lagrangian framework instead of the Eulerian framework. [1] [2] [3]
In the winter of 1856–57, Dirichlet found some solutions of Euler equations and he presented those in his lectures on partial differential equations in July 1857 and published the results in the same month. [4] His work was left unfinished at his sudden death in 1859, but his notes were collated and published by Richard Dedekind posthumously in 1860. [5]
Bernhard Riemann said, "In his posthumous paper, edited for publication by Dedekind, Dirichlet has opened up, in a most remarkable way, an entirely new avenue for investigations on the motion of a self-gravitating homogeneous ellipsoid. The further development of his beautiful discovery has a particular interest to the mathematician even apart from its relevance to the forms of heavenly bodies which initially instigated these investigations."
Dirichlet's problem is generalized by Bernhard Riemann in 1860 [6] and by Norman R. Lebovitz in modern form in 1965. [7] Let be the semi-axes of the ellipsoid, which varies with time. Since the ellipsoid is homogeneous, the constancy of mass requires the constancy of the volume of the ellipsoid,
same as the initial volume. Consider an inertial frame and a rotating frame , with being the linear transformation such that and it is clear that is orthogonal, i.e., . We can define an anti-symmetric matrix with this,
where we can write the dual of as (and ), where is nothing but the time-dependent rotation of the rotating frame with respect to the inertial frame.
Without loss of generality, let us assume that the inertial frame and the moving frame coincide initially, i.e., . By definition, Dirichlet's problem is looking for a solution which is a linear function of initial condition . Let us assume the following form,
and we define a diagonal matrix with diagonal elements being the semi-axes of the ellipsoid, then above equation can be written in matrix form as
where . It can shown then that the matrix transforms the vector linearly to the same vector at any later time , i.e., . From the definition of , we can realize the vector represents a unit normal on the surface of the ellipsoid (true only at the boundary) since a fluid element on the surface moves with the surface. Therefore, we see that transforms one unit vector on the boundary to another unit vector on the boundary, in other words, it is orthogonal, i.e., . In a similar manner as before, we can define another anti-symmetric matrix as
where its dual is defined as (and ). The Dirichlet's ellipsoidal problem then reduces to finding whether the matrix exists that determines the vector and that it is expressible in terms of two orthogonal matrices as in where, further
Let be the velocity field seen by the observer at rest in the moving frame, which can be regarded as the internal fluid motion since this excludes the uniform rotation seen by the inertial observer. This internal motion is found to given by
whose components, explicitly, are given by
These three components show that the internal motion is composed of two parts: one with a uniform vorticity with components
and the other with a stagnation point flow , i.e., . Particularly, the physical meaning of can be seen to be attributed to the uniform-vorticity motion. The pressure is found to assume a quadratic form, as derived by the equation of motion (and using the vanishing condition at the surface) given by
where is the central pressure, so that . Substituting this back in the equation of motion leads to
where is the gravitational constant and is diagonal matrix, whose diagonal elements are given by
The tensor momentum equation and the conservation of mass equation, i.e., provides us with ten equations for the ten unknowns,
It states that if a motion determined by is admissible under the conditions of Dirichlet's problem, then the motion determined by the transpose of is also admissible. In other words, the theorem can be stated as for any state of motions that preserves a ellipsoidal figure, there is an adjoint state of motions that preserves the same ellipsoidal figure.
By taking transpose of the tensor momentum equation, one sees that the role of and are interchanged. If there is solution for , then for the same , there exists another solution with the role of and interchanged. But interchanging and is equivalent to replacing by . The following relations confirms the previous statement.
where, further
The typical configuration of this theorem is the Jacobi ellipsoid and its adjoint is called as Dedekind ellipsoid, in other words, both ellipsoid have same shape, but their internal fluid motions are different.
The tensor momentum equation admits three integrals, with regards to conservation of energy, angular momentum and circulation. The energy integral is found to be [1]
where
Next, we have the integral
which signifies the conservation of , where the angular momentum components are given by
wherein is the total mass. Since the problem is invariant to the interchange of and , from the above integral, we obtain
where we substituted the formula for in terms of the vorticity vector . This integral signifies the conservation of , where thye circulation components (in the inertial frame) are given by
In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.
In engineering, a transfer function of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. It is widely used in electronic engineering tools like circuit simulators and control systems. In simple cases, this function can be represented as a two-dimensional graph of an independent scalar input versus the dependent scalar output. Transfer functions for components are used to design and analyze systems assembled from components, particularly using the block diagram technique, in electronics and control theory.
In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet.
In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.
In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue. As an equation, this condition can be written as for some scalar eigenvalue The solutions to this equation may also be subject to boundary conditions that limit the allowable eigenvalues and eigenfunctions.
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.
In physics, a covariant transformation is a rule that specifies how certain entities, such as vectors or tensors, change under a change of basis. The transformation that describes the new basis vectors as a linear combination of the old basis vectors is defined as a covariant transformation. Conventionally, indices identifying the basis vectors are placed as lower indices and so are all entities that transform in the same way. The inverse of a covariant transformation is a contravariant transformation. Whenever a vector should be invariant under a change of basis, that is to say it should represent the same geometrical or physical object having the same magnitude and direction as before, its components must transform according to the contravariant rule. Conventionally, indices identifying the components of a vector are placed as upper indices and so are all indices of entities that transform in the same way. The sum over pairwise matching indices of a product with the same lower and upper indices is invariant under a transformation.
In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions, i.e., meromorphic functions that are doubly periodic. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.
In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.
In numerical linear algebra, the Jacobi method is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix diagonalization. The method is named after Carl Gustav Jacob Jacobi.
In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process.
The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.
The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations.
In mathematics, the Neumann–Poincaré operator or Poincaré–Neumann operator, named after Carl Neumann and Henri Poincaré, is a non-self-adjoint compact operator introduced by Poincaré to solve boundary value problems for the Laplacian on bounded domains in Euclidean space. Within the language of potential theory it reduces the partial differential equation to an integral equation on the boundary to which the theory of Fredholm operators can be applied. The theory is particularly simple in two dimensions—the case treated in detail in this article—where it is related to complex function theory, the conjugate Beurling transform or complex Hilbert transform and the Fredholm eigenvalues of bounded planar domains.
In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.
In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
The Fokas method, or unified transform, is an algorithmic procedure for analysing boundary value problems for linear partial differential equations and for an important class of nonlinear PDEs belonging to the so-called integrable systems. It is named after Greek mathematician Athanassios S. Fokas.
In mathematics, the exponential response formula (ERF), also known as exponential response and complex replacement, is a method used to find a particular solution of a non-homogeneous linear ordinary differential equation of any order. The exponential response formula is applicable to non-homogeneous linear ordinary differential equations with constant coefficients if the function is polynomial, sinusoidal, exponential or the combination of the three. The general solution of a non-homogeneous linear ordinary differential equation is a superposition of the general solution of the associated homogeneous ODE and a particular solution to the non-homogeneous ODE. Alternative methods for solving ordinary differential equations of higher order are method of undetermined coefficients and method of variation of parameters.
In fluid dynamics, Beltrami flows are flows in which the vorticity vector and the velocity vector are parallel to each other. In other words, Beltrami flow is a flow in which the Lamb vector is zero. It is named after the Italian mathematician Eugenio Beltrami due to his derivation of the Beltrami vector field, while initial developments in fluid dynamics were done by the Russian scientist Ippolit S. Gromeka in 1881.
In astrophysics, the Chandrasekhar virial equations are a hierarchy of moment equations of the Euler equations, developed by the Indian American astrophysicist Subrahmanyan Chandrasekhar, and the physicist Enrico Fermi and Norman R. Lebovitz.