Disk density

Last updated
5 1/4 -inch DD-Disk 5.25"-Diskette.jpg
5¼-inch DD-Disk

Disk density is a capacity designation on magnetic storage, usually floppy disks. Each designation describes a set of characteristics that can affect the areal density of a disk or the efficiency of the encoded data. Such characteristics include modulation method, track width, coercivity, and magnetic field direction.

Contents

8-inch media

Single density (SD or 1D) describes the first generation of floppy disks that use an iron oxide coating. Floppy drives utilize 300-oersted write heads, FM encoding, and a track width of 0.330 mm (0.0130 in) for a density of 48 tracks-per-inch (tpi) and 5,876 bits-per-inch (bpi).

Double density (DD or 2D) doubles capacity over SD by replacing FM encoding with an improved line code, such as modified frequency modulation (MFM), modified modified frequency modulation (M²FM), FM/MFM or group coded recording (GCR).

5¼-inch media

SD (1D) and DD (2D) designations were generally identical to those of 8-inch disks.

Quad density (QD or 4D) doubles capacity over DD by narrowing the width of tracks to 0.160 mm (0.0063 in) for a density of 96 tpi. Some manufacturers (Micropolis, Tandon, Micro Peripherals (MPI), Teac) used a track density of 100 tpi for quad-density drives, which were incompatible with 96 tpi models.

The Commodore 8050 and 8250 are rare instances of drives that used 375 kbit/s GCR code instead of the usual 250 kbit/s double-density format and they could store roughly 500 kilobytes on one side of a disk.

High density (HD) improves capacity by utilizing a 96 tpi track density in conjunction with improved cobalt disk coating and stronger 600-oersted write heads, allowing 9,646 bpi to be written.

3½-inch media

Double density (DD) 3½-inch disks use an iron oxide coating, just as with 5¼-inch DD/QD disks. However, drives utilize stronger 670-oersted write heads and a narrower track width of 0.115 mm (0.0045 in) for a density of 135 tpi and 8,717 bpi.

High density (HD) 3½-inch disks switch to a cobalt disk coating, just as with 5¼-inch HD disks. Drives use 700-oersted write heads for a density of 17,434 bpi.

Extra-high density (ED) doubles the capacity over HD by using a barium ferrite coating and a special write head that allows the use of perpendicular recording. [1] [2]

Triple density (TD) triples the capacity over ED by tripling the track density and improving other parameters. [3] [4] [5] The drives used longitudinal recording. [2]

Overview

Size8-inch5¼-inch3½-inch
DensitySDDDSDDDQDHDDDHDED [1] TD [4]
Disk coatingIron oxide [1] [6] Cobalt [1] [6]  ?Iron oxide, Cobalt? [1] Cobalt [1] [6] Barium ferrite [1]  ?
Coercivity [ Oe ]290, [7] 300 [8] [1] [6] 600, [1] [6] 660, [7] 670 [8] ca. 600600?, [1] [6] 660, [7] 670 [8] 700, [8] 720 [7] [1] 750?, [1] 1060, [7] 1200 ?
Coating thickness [ µm ] ? ? ?100, [8] 2.5, [7] 2.0-3.0 [6]  ?55, [8] 1.3, [7] 1.0-1.5 [6]  ?65, [8] 1.9, [7] 2.0-3.0 [6] 55, [8] 0.9, [7] 1.0-1.5 [6]  ? ?
Line code FM MFM, M²FM, FM/MFM or GCR FMMFM or GCRMFMMFM [9] MFM or GCRMFM
Track width [mm]0.330 [1] 0.160 [1]  ?0.115 [1]  ?
Track density [tpi]48 [1] 96 [1] or 10096 [1] 67.5 [9] 135 [1] 406.5 [4]
Bit density [bpi]5,876, [2] [1] 5,922 [10] 9,646, [1] 9,870 [2] 8,650 [9] 8,717 [2] [1] 17,432, [2] 17,434 [1] 34,868 [2] [1] 36,700 [4]
Recording directionlongitudinal / horizontal [1] perpendicular / vertical [1] longitudinal [2]  / horizontal [1]

See also

Related Research Articles

<span class="mw-page-title-main">Commodore 1581</span>

The Commodore 1581 is a 3½-inch double-sided double-density floppy disk drive that was released by Commodore Business Machines (CBM) in 1987, primarily for its C64 and C128 home/personal computers. The drive stores 800 kilobytes using an MFM encoding but formats different from the MS-DOS, Amiga, and Mac Plus formats. With special software it's possible to read C1581 disks on an x86 PC system, and likewise, read MS-DOS and other formats of disks in the C1581, provided that the PC or other floppy handles the "720 kB" size format. This capability was most frequently used to read MS-DOS disks. The drive was released in the summer of 1987 and quickly became popular with bulletin board system (BBS) operators and other users.

<span class="mw-page-title-main">Commodore 1571</span> Floppy disk drive

The Commodore 1571 is Commodore's high-end 5¼" floppy disk drive, announced in the summer of 1985. With its double-sided drive mechanism, it has the ability to use double-sided, double-density (DS/DD) floppy disks, storing a total of 360 kB per floppy. It also implemented a "burst mode" that improved transfer speeds, helping address the very slow performance of previous Commodore drives.

<span class="mw-page-title-main">Floppy disk</span> Removable disk storage medium

A floppy disk or floppy diskette is a type of disk storage composed of a thin and flexible disk of a magnetic storage medium in a square or nearly square plastic enclosure lined with a fabric that removes dust particles from the spinning disk. Floppy disks store digital data which can be read and written when the disk is inserted into a floppy disk drive (FDD) connected to or inside a computer or other device.

<span class="mw-page-title-main">ST506/ST412</span>

The ST-506 and ST-412 were early hard disk drive products introduced by Seagate in 1980 and 1981 respectively, that later became construed as hard disk drive interfaces: the ST-506 disk interface and the ST-412 disk interface. Compared to the ST-506 precursor, the ST-412 implemented a refinement to the seek speed, and increased the drive capacity from 5 MB to 10 MB, but was otherwise highly similar.

<span class="mw-page-title-main">SuperDisk</span> Storage medium from Imation

The SuperDisk LS-120 is a high-speed, high-capacity alternative to the 90 mm (3.5 in), 1.44 MB floppy disk. The SuperDisk hardware was created by 3M's storage products group Imation in 1997, with manufacturing chiefly by Matsushita.

<span class="mw-page-title-main">IBM Personal Computer AT</span> IBM personal computer released in 1984

The IBM Personal Computer AT was released in 1984 as the fourth model in the IBM Personal Computer line, following the IBM PC/XT and its IBM Portable PC variant. It was designed around the Intel 80286 microprocessor.

In computer science, group coded recording or group code recording (GCR) refers to several distinct but related encoding methods for representing data on magnetic media. The first, used in 6250 bpi magnetic tape since 1973, is an error-correcting code combined with a run-length limited (RLL) encoding scheme, belonging into the group of modulation codes. The others are different mainframe hard disk as well as floppy disk encoding methods used in some microcomputers until the late 1980s. GCR is a modified form of a NRZI code, but necessarily with a higher transition density.

Modified frequency modulation (MFM) is a run-length limited (RLL) line code used to encode data on most floppy disks and some hard disk drives. It was first introduced on hard disks in 1970 with the IBM 3330 and then in floppy disk drives beginning with the IBM 53FD in 1976.

On the Amiga, the Old File System was the filesystem for AmigaOS before the Amiga Fast File System. Even though it used 512-byte blocks, it reserved the first small portion of each block for metadata, leaving an actual data block capacity of 488 bytes per block. It wasn't very suitable for anything except floppy disks, and it was soon replaced.

Micropolis Corporation was a disk drive company located in Chatsworth, California and founded in 1976. Micropolis initially manufactured high capacity hard-sectored 5.25-inch floppy drives and controllers, later manufacturing hard drives using SCSI and ESDI interfaces.

<span class="mw-page-title-main">Commodore 8050</span>

The Commodore 8050, Commodore 8250, and Commodore SFD-1001 are 5¼-inch floppy disk drives manufactured by Commodore International, primarily for its 8-bit CBM and PET series of computers. The drives offered improved storage capacities over previous Commodore drive models.

<span class="mw-page-title-main">Western Digital FD1771</span> Floppy disk controller

The FD1771, sometimes WD1771, is the first in a line of floppy disk controllers produced by Western Digital. It uses single density FM encoding introduced in the IBM 3740. Later models in the series added support for MFM encoding and increasingly added onboard circuitry that formerly had to be implemented in external components. Originally packaged as 40-pin dual in-line package (DIP) format, later models moved to a 28-pin format that further lowered implementation costs.

Floppy disk format and density refer to the logical and physical layout of data stored on a floppy disk. Since their introduction, there have been many popular and rare floppy disk types, densities, and formats used in computing, leading to much confusion over their differences. In the early 2000s, most floppy disk types and formats became obsolete, leaving the 3+12-inch disk, using an IBM PC compatible format of 1440 KB, as the only remaining popular format.

<span class="mw-page-title-main">Floppy-disk controller</span> Circuitry that controls reading from and writing to a computers floppy disk drive

A floppy-disk controller (FDC) has evolved from a discrete set of components on one or more circuit boards to a special-purpose integrated circuit or a component thereof. An FDC directs and controls reading from and writing to a computer's floppy disk drive (FDD). The FDC is responsible for reading data presented from the host computer and converting it to the drive's on-disk format using one of a number of encoding schemes, like FM encoding or MFM encoding, and reading those formats and returning it to its original binary values.

<span class="mw-page-title-main">Disk II</span> Floppy disk drive for the Apple II computer

The Disk II Floppy Disk Subsystem, often rendered as Disk ][, is a 5 +14-inch floppy disk drive designed by Steve Wozniak at the recommendation of Mike Markkula, and manufactured by Apple Computer, Inc. It went on sale in June 1978 at a retail price of US$495 for pre-order; it was later sold for $595 including the controller card and cable. The Disk II was designed specifically for use with the Apple II personal computer family to replace the slower cassette tape storage. These floppy drives cannot be used with any Macintosh without an Apple IIe Card as doing so will damage the drive or the controller.

<span class="mw-page-title-main">History of the floppy disk</span>

A floppy disk is a disk storage medium composed of a disk of thin and flexible magnetic storage medium encased in a rectangular plastic carrier. It is read and written using a floppy disk drive (FDD). Floppy disks were an almost universal data format from the 1970s into the 1990s, used for primary data storage as well as for backup and data transfers between computers.

<span class="mw-page-title-main">Floppy disk variants</span> Types of floppy disk formats

The floppy disk is a data storage and transfer medium that was ubiquitous from the mid-1970s well into the 2000s. Besides the 3½-inch and 5¼-inch formats used in IBM PC compatible systems, or the 8-inch format that preceded them, many proprietary floppy disk formats were developed, either using a different disk design or special layout and encoding methods for the data held on the disk.

<span class="mw-page-title-main">Durango F-85</span> Early personal computer by Durango Systems Corporation

The Durango F-85 was an early personal computer introduced in September 1978 by Durango Systems Corporation, a company started in 1977 by George E. Comstock, John M. Scandalios and Charles L. Waggoner, all formerly of Diablo Systems. The F-85 could run its own multitasking operating system called DX-85M, which included an integral Indexed Sequential (ISAM) file system and per-task file locking, or alternatively CP/M-80. DX-85M utilized a text configuration file named CONFIG.SYS five years before this filename was used for a similar purpose under MS-DOS/PC DOS 2.0 in 1983.

<span class="mw-page-title-main">Frequency modulation encoding</span> Encoding method used on early floppy and hard disk drives

Frequency modulation encoding, or simply FM, is a method of storing data that saw widespread use in early floppy disk drives and hard disk drives. The data is modified using differential Manchester encoding when written to allow clock recovery to address timing effects known as "jitter" seen on disk media. It was introduced on IBM mainframe drives and was almost universal among early minicomputer and microcomputer floppies. In the case of floppies, FM encoding allowed about 80 kB of data to be stored on a 5+14-inch disk.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Mueller, Scott (1994). Hardware-Praxis - PCs warten reparieren, aufrüsten und konfigurieren (in German) (3rd ed.). Addison-Wesley Publishing Company. ISBN   3-89319-705-2.
  2. 1 2 3 4 5 6 7 8 Shah, Katen A. (1996) [September 1992, April 1992]. Intel 82077SL for Super-Dense Floppies (PDF) (Application Note) (2 ed.). Intel Corporation, IMD Marketing. AP-358, 292093-002. Archived (PDF) from the original on 2017-06-19. Retrieved 2017-06-19.
  3. IDG (1988-07-29). "Hitachi-Maxell bietet NEC neue 12,5-MB-Floppy an". Computerwoche (in German). Tokio, Japan. Archived from the original on 2017-06-19. Retrieved 2017-06-19. […] Hitachi-Maxell hat ein 3½-Zoll-Diskettenlaufwerk mit einer Speicherkapazität von 12.5 MB entwickelt. Nach eigenen Angaben will das Unternehmen auf OEM-Basis den Hersteller NEC mit den Geräten versorgen. Dort sollen sie als externer Speicher für die neue PC-Serie PC88VA3 eingesetzt werden. Die Laufwerke mit der Bezeichnung PC FD810.1 sind voraussichtlich ab dem vierten Quartal dieses Jahres lieferbar. Bis Ende 1989 will NEC die ersten 150000 Geräte verkauft haben. […]
  4. 1 2 3 4 NEC µPD72070 - Floppy Disk Controller Specification Version 2.0 (PDF). 2.0 preliminary. NEC Corporation. October 1991. Archived (PDF) from the original on 2017-03-20. Retrieved 2017-03-20.
  5. "PC-88VA <ハードウエア>" (in Japanese). 1995-06-24. Archived from the original on 2017-06-18. Retrieved 2017-06-18.
  6. 1 2 3 4 5 6 7 8 9 10 Yaskawa, Seiichi; Heath, John (1988). "3. Data Storage on Flexible Disks". In Mee, C. Denis; Daniel, Eric D. (eds.). Magnetic Recording. Vol. II: Computer Data Storage (1st ed.). McGraw-Hill Book Company. pp. 130–169. ISBN   0-07-041272-3.
  7. 1 2 3 4 5 6 7 8 9 Guzis, Charles P. (2011-08-12) [July 2009]. Johnson, Herbert R. (ed.). "Use of HD and DD drives, diskettes". Archived from the original on 2017-06-19. Retrieved 2017-06-19. (NB. Based on specifications by the National Media Laboratory, associated with 3M/Imation.)
  8. 1 2 3 4 5 6 7 8 Scott, Greg (1990-07-16). "More on Floppies". U-M Computing News. University of Michigan, Information Technology Division. 5 (12): 10–11. Retrieved 2017-06-19.
  9. 1 2 3 Epson PF-10 Operating Manual (PDF). Nagano, Japan: Epson Corporation. 1984. Archived (PDF) from the original on 2017-06-19. Retrieved 2017-06-19. (NB. The Epson PF-10 is an external diskette drive for the Epson PX-8 (Geneva) CP/M laptop.)
  10. Williams, John J. "FM vs. MFM encoding". Disk Service Manual III - Unleash the Power of Your System! (PDF) (III ed.). Alamogordo, New Mexico, USA: Consumertronics Co. Retrieved 2021-11-02.