Displacement (linguistics)

Last updated

In linguistics, displacement is the capability of language to communicate about things that are not immediately present (spatially or temporally); i.e., things that are either not here or are not here now.

Contents

In 1960, Charles F. Hockett proposed displacement as one of 13 design features of language that distinguish human language from animal communication systems (ACSs):

Man is apparently almost unique in being able to talk about things that are remote in space or time (or both) from where the talking goes on. This feature—"displacement"—seems to be definitely lacking in the vocal signaling of man's closest relatives, though it does occur in bee-dancing. [1]

In animal communication systems

Honeybees use the waggle dance to communicate the location of a patch of flowers suitable for foraging. The degree of displacement in this example remains limited when compared to human language. A bee can only communicate the location of the most recent food source it has visited. It cannot communicate an idea about a food source at a specific point in the past, nor can it speculate about food sources in the future. [2] In addition, displacement in the waggle dance is restricted by the language's lack of creativity and productivity. The bees can express direction and distance, but it has been experimentally determined that they lack a sign for "above". It is also doubtful that bees can communicate about non-existent nectar for the purpose of deception. [3] Consequently, in honeybee communication, the potential for displacement is limited, but it is there insofar as they have the ability to communicate about something not currently present (i.e., something that is spatially removed).

Ants have been observed sending out scouts to patrol for food items, and coming back for other workers if the food found is too large to bring to the nest by the finder alone; for example, a dead caterpillar that is too heavy. This again would involve displacement by communicating outside of the here and now. Recruitment has also been observed by the African Weaver Ant Oecophylla longinoda for the purpose of communicating new food sources, emigration to new sites, and for defense against intruders. Researchers have described no less than five distinct systems to fulfill these functions in this species. [4] The ants communicate using a system composed of olfactory or scent clues from several glands together with body movements. The animals will use antennation, body jerking, and mouth-opening, and will combine these clues with the application of the scent trails or scent release to pass on information regarding resources or intruders.

Ravens (Corvus corax) have been observed to recruit other ravens to large feeding sites, such as to the carcass of an animal. However, their motivation for recruiting appears less obvious, and the specifics of their communication system are more elusive. Still, it has been documented that ravens must have such a system, as their patterns of gathering at sites clearly indicate that they must have been informed of the presence of the resource. [5] [6] It is believed that non-mated ravens call in a group of other non-mated birds to be able to feed and not get chased away by mated territorial pairs of established ravens.

In addition to honeybees, ants, and ravens, the Greater Honeyguide (Indicator indicator) achieves displacement when it signals to humans the location of distant honeybee colonies. This fascinating mutualistic relationship between people and a wild bird, and the communicative system underlying the partnership, has been studied by anthropologists and ornithologists [7] [8] [9] [10] .

Importance in evolution of language

The need to convey information using displacement has been suspected to have been the evolutionary pressure leading to language development in humans, as outlined by Derek Bickerton in Adam's Tongue. [11] The pressure of such need is present in species with a foraging strategy that presents the challenge of directing members of its group to a food source too large to be utilized singly or in small numbers, requiring recruitment of assistance.

It's only when you fully appreciate what displacement means, how the absence of displacement is not just a casual feature of ACSs but a crucial defining feature of pre-human minds, that you can start getting the complete picture.

Bickerton, page 217

The unique environmental need selecting for a communication system capable for displacement in humans or their direct ancestors is not identified, but hypotheses include Bickerton's theory of small groups finding large herbivore carcasses, and needing the assistance from other small groups of humans to defend against other dangerous scavengers (large cats, hyenas) competing for the same source of food. Language development most certainly did not stop there—since otherwise bees or ants would have comparable communication systems to humans—but this is where it is hypothesized to have begun, giving human ancestors the ability to take communication out of the here and now.

See also

Related Research Articles

<span class="mw-page-title-main">Charles F. Hockett</span> American linguist (1916–2000)

Charles Francis Hockett was an American linguist who developed many influential ideas in American structuralist linguistics. He represents the post-Bloomfieldian phase of structuralism often referred to as "distributionalism" or "taxonomic structuralism". His academic career spanned over half a century at Cornell and Rice universities. Hockett was also a firm believer of linguistics as a branch of anthropology, making contributions that were significant to the field of anthropology as well.

<span class="mw-page-title-main">Corvidae</span> Family of perching birds

Corvidae is a cosmopolitan family of oscine passerine birds that contains the crows, ravens, rooks, magpies, jackdaws, jays, treepies, choughs, and nutcrackers. In colloquial English, they are known as the crow family or corvids. Currently, 135 species are included in this family. The genus Corvus containing 47 species makes up over a third of the entire family. Corvids (ravens) are the largest passerines.

<span class="mw-page-title-main">Karl von Frisch</span> German-Austrian ethologist (1886–1982)

Karl Ritter von Frisch, was a German-Austrian ethologist who received the Nobel Prize in Physiology or Medicine in 1973, along with Nikolaas Tinbergen and Konrad Lorenz.

<span class="mw-page-title-main">Bee learning and communication</span> Cognitive and sensory processes in bees

Bee learning and communication includes cognitive and sensory processes in all kinds of bees, that is the insects in the seven families making up the clade Anthophila. Some species have been studied more extensively than others, in particular Apis mellifera, or European honey bee. Color learning has also been studied in bumblebees.

<span class="mw-page-title-main">Common raven</span> Large, black, passerine bird of the Northern Hemisphere

The common raven is a large all-black passerine bird. It is the most widely distributed of all corvids, found across the Northern Hemisphere. It is a raven known by many names at the subspecies level; there are at least eight subspecies with little variation in appearance, although recent research has demonstrated significant genetic differences among populations from various regions. It is one of the two largest corvids, alongside the thick-billed raven, and is possibly the heaviest passerine bird; at maturity, the common raven averages 63 centimetres in length and 1.47 kilograms in mass. Although their typical lifespan is considerably shorter, common ravens can live more than 23 years in the wild. Young birds may travel in flocks but later mate for life, with each mated pair defending a territory.

<span class="mw-page-title-main">Animal language</span> Complex animal communication

Animal languages are forms of non-human animal communication that show similarities to human language. Animals communicate through a variety of signs, such as sounds or movements. Signing among animals may be considered a form of language if the inventory of signs is large enough. The signs are relatively arbitrary, and the animals seem to produce them with a degree of volition. In experimental tests, animal communication may also be evidenced through the use of lexigrams by chimpanzees and bonobos.

<span class="mw-page-title-main">Animal communication</span> Transfer of information from animal to animal

Animal communication is the transfer of information from one or a group of animals to one or more other animals that affects the current or future behavior of the receivers. Information may be sent intentionally, as in a courtship display, or unintentionally, as in the transfer of scent from predator to prey with kairomones. Information may be transferred to an "audience" of several receivers. Animal communication is a rapidly growing area of study in disciplines including animal behavior, sociology, neurology and animal cognition. Many aspects of animal behavior, such as symbolic name use, emotional expression, learning and sexual behavior, are being understood in new ways.

<span class="mw-page-title-main">Derek Bickerton</span> American linguist

Derek Bickerton was an English-born linguist and professor at the University of Hawaiʻi at Mānoa. Based on his work in creole languages in Guyana and Hawaii, he has proposed that the features of creole languages provide powerful insights into the development of language both by individuals and as a feature of the human species. He is the originator and main proponent of the language bioprogram hypothesis according to which the similarity of creoles is due to their being formed from a prior pidgin by children who all share a universal human innate grammar capacity.

<span class="mw-page-title-main">Waggle dance</span> Honey bees particular figure-eight dance

Waggle dance is a term used in beekeeping and ethology for a particular figure-eight dance of the honey bee. By performing this dance, successful foragers can share information about the direction and distance to patches of flowers yielding nectar and pollen, to water sources, or to new nest-site locations with other members of the colony.

<span class="mw-page-title-main">Weaver ant</span> Genus of ants

Weaver ants or green ants are eusocial insects of the family Formicidae. Weaver ants live in trees and are known for their unique nest building behaviour where workers construct nests by weaving together leaves using larval silk. Colonies can be extremely large consisting of more than a hundred nests spanning numerous trees and containing more than half a million workers. Like many other ant species, weaver ants prey on small insects and supplement their diet with carbohydrate-rich honeydew excreted by small insects (Hemiptera). Weaver ant workers exhibit a clear bimodal size distribution, with almost no overlap between the size of the minor and major workers. The major workers are approximately 8–10 mm (0.31–0.39 in) in length and the minors approximately half the length of the majors. Major workers forage, defend, maintain, and expand the colony whereas minor workers tend to stay within the nests where they care for the brood and 'milk' scale insects in or close to the nests.

<span class="mw-page-title-main">Human–animal communication</span> Verbal and non-verbal interspecies communication

Human–animal communication is the communication observed between humans and other animals, ranging from non-verbal cues and vocalizations to the use of language.

<i>Apis florea</i> Species of bee

The dwarf honey bee, Apis florea, is one of two species of small, wild honey bees of southern and southeastern Asia. It has a much wider distribution than its sister species, Apis andreniformis. First identified in the late 18th century, Apis florea is unique for its morphology, foraging behavior and defensive mechanisms like making a piping noise. Apis florea have open nests and small colonies, which makes them more susceptible to predation than cavity nesters with large numbers of defensive workers. These honey bees are important pollinators and therefore commodified in countries like Cambodia.

<span class="mw-page-title-main">Round dance (honey bee)</span> Honeybee behavior

A round dance is the communicative behaviour of a foraging honey bee, in which it moves on the comb in close circles, alternating right and then left. It was previously believed that the round dance indicates that the forager has located a profitable food source close to the hive and the round dance transitions into the waggle dance when food sources are more than 50 meters (160 ft) away. Recent research shows that bees have only one dance that always encodes distance and direction to the food source, but that precision and expression of this information depends on the distance to the target; therefore, the use of "round dance" is outdated. Elements of the round dance also provide information regarding the forager's subjective evaluation of the food source's profitability.

<i>Corvus</i> Genus of birds including crows, ravens and rooks

Corvus is a widely distributed genus of birds ranging from medium-sized to large-sized in the family Corvidae. It includes species commonly known as crows, ravens, and rooks. The species commonly encountered in Europe are the carrion crow, hooded crow, common raven, and rook; those discovered later were named "crow" or "raven" chiefly on the basis of their size, crows generally being smaller. The genus name is Latin for "raven".

<i>Apis dorsata</i> Species of insect

Apis dorsata, the rock bee or giant honey bee, is a honey bee of South and Southeast Asia. They are typically around 17–20 mm (0.7–0.8 in) long and nests are mainly built in exposed places far off the ground, like on tree limbs, under cliff overhangs, and under buildings. These social bees are known for their aggressive defense strategies and vicious behavior when disturbed. Though not domesticated, indigenous peoples have traditionally used this species as a source of honey and beeswax, a practice known as honey hunting.

A tremble dance is a dance performed by forager honey bees of the species Apis mellifera to recruit more receiver honey bees to collect nectar from the workers.

Task allocation and partitioning is the way that tasks are chosen, assigned, subdivided, and coordinated within a colony of social insects. Task allocation and partitioning gives rise to the division of labor often observed in social insect colonies, whereby individuals specialize on different tasks within the colony. Communication is closely related to the ability to allocate tasks among individuals within a group. This entry focuses exclusively on social insects. For information on human task allocation and partitioning, see division of labour, task analysis, and workflow.

<span class="mw-page-title-main">Bumblebee communication</span>

Bumblebees, like the honeybee collect nectar and pollen from flowers and store them for food. Many individuals must be recruited to forage for food to provide for the hive. Some bee species have highly developed ways of communicating with each other about the location and quality of food resources ranging from physical to chemical displays.

<span class="mw-page-title-main">Hymenoptera training</span> Bees or wasps trained to detect dangerous substances

Sniffer bees or sniffer wasps are insects in the order Hymenoptera that can be trained to perform a variety of tasks to detect substances such as explosive materials or illegal drugs, as well as some human and plant diseases. The sensitivity of the olfactory senses of bees and wasps in particular have been shown to rival the abilities of sniffer dogs, though they can only be trained to detect a single scent each.

Hockett's Design Features are a set of features that characterize human language and set it apart from animal communication. They were defined by linguist Charles F. Hockett in the 1960s. He called these characteristics the design features of language. Hockett originally believed there to be 13 design features. While primate communication utilizes the first 9 features, the final 4 features are reserved for humans. Hockett later added prevarication, reflexiveness, and learnability to the list as uniquely human characteristics. He asserted that even the most basic human languages possess these 16 features.

References

  1. Hockett, Charles F. (1960), "The origin of speech", Scientific American , 203 (3): 88–96, Bibcode:1960SciAm.203c..88H, doi:10.1038/scientificamerican0960-88, PMID   14402211, archived from the original on 26 April 2010, retrieved 19 February 2011
  2. Yule, George (2010), The Study of Language (4th ed.), New York: Cambridge University Press, pp. 11–12, ISBN   978-0-521-76527-5
  3. Meyer, Paul Georg (2005), Synchronic English Linguistics: An Introduction (3rd ed.), Tübingen: Gunter Narr Verlag, p. 265, ISBN   3-8233-6191-0
  4. Holldobler, Bert and Wilson, Edward O. 1977. The Multiple Recruitment Systems of the African Weaver Ant Oecophylla longinoda (Latreille) (Hymenopetera: Formicidae) Behavioral Ecology and Sociobiology: 3,19-60 (1978)
  5. Heinrich, B. Winter foraging at carcasses by three sympatric corvids, with emphasis on recruitment by the raven, Corvus corax. Behavioral Ecology and Sociobiology:3, 141-156 (1998)
  6. Heinrich, B and Marzluff, J.M. Do common ravens yell because they want to attract others? Behavioral Ecology and Sociobiology: 28, 13-21 (1991)
  7. Isack, H. A.; Reyer, H.-U. (1989-03-10). "Honeyguides and Honey Gatherers: Interspecific Communication in a Symbiotic Relationship". Science. 243 (4896): 1343–1346. doi:10.1126/science.243.4896.1343. ISSN   0036-8075.
  8. Wood, Brian M.; Pontzer, Herman; Raichlen, David A.; Marlowe, Frank W. (2014). "Mutualism and manipulation in Hadza–honeyguide interactions". Evolution and Human Behavior. 35 (6): 540–546. doi:10.1016/j.evolhumbehav.2014.07.007. ISSN   1090-5138.
  9. Spottiswoode, Claire N.; Begg, Keith S.; Begg, Colleen M. (2016-07-22). "Reciprocal signaling in honeyguide-human mutualism". Science. 353 (6297): 387–389. doi:10.1126/science.aaf4885. ISSN   0036-8075.
  10. Spottiswoode, Claire N.; Wood, Brian M. (2023-12-08). "Culturally determined interspecies communication between humans and honeyguides". Science. 382 (6675): 1155–1158. doi:10.1126/science.adh4129. ISSN   0036-8075.
  11. Bickerton, Derek (2009). Adam's Tongue. Hill and Wang. ISBN   978-0-8090-2281-6.