Distinguishable interfaces

Last updated

Distinguishable interfaces use computer graphic principles to automatically generate easily distinguishable appearance for computer data.

Contents

Although the desktop metaphor revolutionized user interfaces, there is evidence that a spatial layout alone does little to help in locating files and other data; distinguishable appearance is also required. Studies have shown that average users have considerable difficulty finding files on their personal computers, even ones that they created the same day. [1] Search engines do not always help, since it has been found that users often know of the existence of a file without being able to specify relevant search terms. On the contrary, people appear to incrementally search for files using some form of context. [2]

Desktop metaphor

In computing, the desktop metaphor is an interface metaphor which is a set of unifying concepts used by graphical user interfaces to help users interact more easily with the computer. The desktop metaphor treats the computer monitor as if it is the top of the user's desk, upon which objects such as documents and folders of documents can be placed. A document can be opened into a window, which represents a paper copy of the document placed on the desktop. Small applications called desk accessories are also available, such as a desk calculator or notepad, etc.

Recently researchers and web developers have argued that the problem is the lack of distinguishable appearance: in the traditional computer interface most objects and locations appear identical. This problem rarely occurs in the real world, where both objects and locations generally have easily distinguishable appearance. Discriminability was one of the recommendations in the ISO 9241-12 recommendation on presentation of information on visual displays (part of the overall report on Ergonomics of Human System Interaction), however it was assumed in that report that this would be achieved by manual design of graphical symbols.

ISO 9241 is a multi-part standard from the International Organization for Standardization (ISO) covering ergonomics of human-computer interaction. It is managed by the ISO Technical Committee 159. It was originally titled Ergonomic requirements for office work with visual display terminals (VDTs). From 2006 on, the standards were retitled to the more generic Ergonomics of Human System Interaction.

VisualIDs, semanticons, and identicons

The mass availability of computer graphics supported the introduction of approaches that make better use of the brain's "visual hardware", by providing individual files and other abstract data with distinguishable appearance. This idea initially appeared in strictly academic VisualIDs [3] and Semanticons [4] works, but the web community has explored and rapidly adopted similar ideas, such as the Identicon.

Identicon

An Identicon is a visual representation of a hash value, usually of an IP address, that serves to identify a user of a computer system as a form of avatar while protecting the users' privacy. The original Identicon was a 9-block graphic, and the representation has been extended to other graphic forms by third parties.

The VisualIDs project [3] [5] automatically generated icons for files or other data based on a hash of the data identifier, so the icons had no relation to the content or meaning of the data. It was argued not only that generating meaningful icons is unnecessary [6] (their user study showed rapid learning of the arbitrary icons), but also that basing icons on content is actually incorrect [7] ("contrasting visualization with visual identifiers" [3] ).

The Semanticons project [4] [8] developed by Setlur et al. demonstrated an algorithm to create icons that reflect the content of files. In this work the name, location and content of a file are parsed and used to retrieve related image(s) from an image database. These are then processed using a Non-photorealistic rendering technique in order to generate graphical icons.

Non-photorealistic rendering

Non-photorealistic rendering (NPR) is an area of computer graphics that focuses on enabling a wide variety of expressive styles for digital art. In contrast to traditional computer graphics, which has focused on photorealism, NPR is inspired by artistic styles such as painting, drawing, technical illustration, and animated cartoons. NPR has appeared in movies and video games in the form of "toon shading", as well as in scientific visualization, architectural illustration and experimental animation. An example of a modern use of this method is that of cel-shaded animation.

Developer Don Park introduced the identicon library for making a visual icon from a hash of a data identifier. This initial public implementation has spawned a large number of implementations for various environments. In particular, identicons are now being used as default visual user identifiers (avatars) for several widely used systems. They are also used as a complement to Gravatars, which are pre-existing avatar images created or chosen by users, instead of automatically generated images. (see #External links).

Gravatar web service providing individuals with a "Globally Recognized Avatar"

Gravatar is a service for providing globally unique avatars and was created by Tom Preston-Werner. Since 2007, it has been owned by Automattic, having integrated it into their WordPress.com blogging platform.

Current research

While current web practice has followed the semantics-free approach of VisualIDs, recent research has followed the semantics-based approach of Semanticons. Examples include using data mining principles to automatically create "intelligent icons" that reflect the contents of files [9] and creating icons for music files that reflect audio characteristics [10] or affective content. [11]

See also

Related Research Articles

Graphical user interface user interface allowing interaction through graphical icons and visual indicators

The graphical user interface is a form of user interface that allows users to interact with electronic devices through graphical icons and visual indicators such as secondary notation, instead of text-based user interfaces, typed command labels or text navigation. GUIs were introduced in reaction to the perceived steep learning curve of command-line interfaces (CLIs), which require commands to be typed on a computer keyboard.

History of the graphical user interface

The history of the graphical user interface, understood as the use of graphic icons and a pointing device to control a computer, covers a five-decade span of incremental refinements, built on some constant core principles. Several vendors have created their own windowing systems based on independent code, but with basic elements in common that define the WIMP "window, icon, menu and pointing device" paradigm.

Website set of related web pages served from a single web domain

A website or Web site is a collection of related network web resources, such as web pages, multimedia content, which are typically identified with a common domain name, and published on at least one web server. Notable examples are wikipedia.org, google.com, and amazon.com.

Desktop publishing creation of documents using page layout skills on a personal computer

Desktop publishing (DTP) is the creation of documents using page layout skills on a personal ("desktop") computer primarily for print. Desktop publishing software can generate layouts and produce typographic quality text and images comparable to traditional typography and printing. This technology allows individuals, businesses, and other organizations to self-publish a wide range of printed matter. Desktop publishing is also the main reference for digital typography. When used skillfully, desktop publishing allows the user to produce a wide variety of materials, from menus to magazines and books, without the expense of commercial printing.

In computing, an icon is a pictogram or ideogram displayed on a computer screen in order to help the user navigate a computer system. The icon itself is a quickly comprehensible symbol of a software tool, function, or a data file, accessible on the system and is more like a traffic sign than a detailed illustration of the actual entity it represents. It can serve as an electronic hyperlink or file shortcut to access the program or data. The user can activate an icon using a mouse, pointer, finger, or recently voice commands. Their placement on the screen, also in relation to other icons, may provide further information to the user about their usage. In activating an icon, the user can move directly into and out of the identified function without knowing anything further about the location or requirements of the file or code.

Drag and drop action in computer graphic user interfaces

In computer graphical user interfaces, drag and drop is a pointing device gesture in which the user selects a virtual object by "grabbing" it and dragging it to a different location or onto another virtual object. In general, it can be used to invoke many kinds of actions, or create various types of associations between two abstract objects.

Visual programming language

In computing, a visual programming language (VPL) is any programming language that lets users create programs by manipulating program elements graphically rather than by specifying them textually. A VPL allows programming with visual expressions, spatial arrangements of text and graphic symbols, used either as elements of syntax or secondary notation. For example, many VPLs are based on the idea of "boxes and arrows", where boxes or other screen objects are treated as entities, connected by arrows, lines or arcs which represent relations.

WIMP (computing)

In human–computer interaction, WIMP stands for "windows, icons, menus, pointer", denoting a style of interaction using these elements of the user interface. It was coined by Merzouga Wilberts in 1980. Other expansions are sometimes used, such as substituting "mouse" and "mice" for menus, or "pull-down menu" and "pointing" for pointer.

Widget (GUI) element of a graphical user interface (GUI)

A control element in a graphical user interface is an element of interaction, such as a button or a scroll bar. Controls are software components that a computer user interacts with through direct manipulation to read or edit information about an application. User interface libraries such as Windows Presentation Foundation, GTK+, and Cocoa, contain a collection of controls and the logic to render these.

In computer hypertext, a fragment identifier is a string of characters that refers to a resource that is subordinate to another, primary resource. The primary resource is identified by a Uniform Resource Identifier (URI), and the fragment identifier points to the subordinate resource.

Desktop organizer software applications are applications that automatically create useful organizational structures from desktop content from heterogeneous types of content including email, files, contacts, companies, RSS news feeds, photos, music and chat sessions. The organization is based on a combination of automated scanning of metadata similar to data mining and manual tagging of content. The metadata stored in applications is correlated based on a structure for the data type handled by the organizer tool. For example, the email address of a sender of an email allows the email to be filed in a virtual folder for the author and company the author works for or a music file is filed by the musician and album label. The resulting visualization simplifies use of desktop content to navigate, search, and use related information stored on the desktop computer. The data in desktop organizer tools is normally stored in a database rather than the computer's file system in order to produce virtual folders where the same item can appear in multiple folders to the user based on its relationship to the folder.

In computing, a file shortcut is a handle in a user interface that allows the user to find a file or resource located in a different directory or folder from the place where the shortcut is located. Similarly, an Internet shortcut allows the user to open a page, file or resource located at a remote Internet location or Web site.

Page layout part of graphic design that deals in the arrangement of visual elements on a page

Page layout is the part of graphic design that deals in the arrangement of visual elements on a page. It generally involves organizational principles of composition to achieve specific communication objectives.

Windows XP introduced many features not found in previous versions of Windows.

Compared with previous versions of Microsoft Windows, new features of Windows Vista are numerous, covering most aspects of the operating system. They include new technical features, new aspects of security and safety, new networking features, new I/O technologies, and additional management features.

The Windows shell is the graphical user interface for the Microsoft Windows operating system. Its readily identifiable elements consists of the desktop, the taskbar, the Start menu, the task switcher and the Autoplay feature. On some versions of Windows, it also includes Flip 3D and the charms. In Windows 10, the Windows Shell Experience Host interface drives visuals like the Start Menu, Action Center, Taskbar, and Task View/Timeline. However, the Windows shell also implements a shell namespace that enables computer programs running on Windows to access the computer's resources via the hierarchy of shell objects. "Desktop" is the top object of the hierarchy; below it there are a number of files and folders stored on the disk, as well as a number of special folders whose contents are either virtual or dynamically created. Recycle Bin, Libraries, Control Panel, This PC and Network are examples of such shell objects.

A single-page application (SPA) is a web application or web site that interacts with the user by dynamically rewriting the current page rather than loading entire new pages from a server. This approach avoids interruption of the user experience between successive pages, making the application behave more like a desktop application. In a SPA, either all necessary code – HTML, JavaScript, and CSS – is retrieved with a single page load, or the appropriate resources are dynamically loaded and added to the page as necessary, usually in response to user actions. The page does not reload at any point in the process, nor does control transfer to another page, although the location hash or the HTML5 History API can be used to provide the perception and navigability of separate logical pages in the application. Interaction with the single page application often involves dynamic communication with the web server behind the scenes.

Some of the new features included in Windows 7 are advancements in touch, speech, and handwriting recognition, support for virtual hard disks, support for additional file formats, improved performance on multi-core processors, improved boot performance, and kernel improvements.

Upload components are software products that are designed to be embedded into a web site to add upload functionality to it. Upload components are designed to replace the standard HTML4 upload mechanism. Compared with HTML4, Upload Components have a more user-friendly interface and support a wider range of features.

References

  1. Barreau, Deborah; Bonnie A. Nardi (1995), "Finding and reminding: file organization from the desktop", SIGCHI Bulletin, 27 (3): 647–656, doi:10.1145/221296.221307
  2. Teevan, Jaime; Christine Alvarado; Mark S. Ackerman; David R. Karger (2004), "The Perfect Search Engine Is Not Enough: A Study of Orienteering Behavior in Directed Search", CHI Conference
  3. 1 2 3 Lewis, J.P.; Ruth Rosenholtz; Nickson Fong; Ulrich Neumann (2004), "VisualIDs: automatic distinctive icons for desktop interfaces", ACM Transactions on Graphics, 23 (3): 416, doi:10.1145/1015706.1015739
  4. 1 2 Setlur, Vidya; Conrad Albrecht-Buehler; Amy A. Gooch; Sam Rossoff; Bruce Gooch (2005), "Semanticons: Visual Metaphors as File Icons", Computer Graphics Forum, 24 (3): 647–656, CiteSeerX   10.1.1.141.7183 , doi:10.1111/j.1467-8659.2005.00889.x
  5. Kanellos, Michael. "Cnet News: Navigating PCs with pictures, not words" . Retrieved 26 December 2010.
  6. Lewis, J.P., VisualIDs: FAQ , retrieved 19 March 2013
  7. Lewis, J.P., VisualIDs: FAQ , retrieved 19 March 2013
  8. Piquepaille, Roland. "ZDNET: Semanticons reveal the meaning of files" . Retrieved 26 December 2010.
  9. Keogh, Eamonn; Li Wei; Xiaopeng Xi; Stephano Lonardi; Jin Shieh; Scott Sirowy (2006), "Intelligent Icons: Integrating Lite-Weight Data Mining and Visualization into GUI Operating Systems", ICDM
  10. Kolhoff, Phillipp; Jacqueline Preuss; Jörn Lovisach (2008), "Content-based icons for music files", Computers & Graphics, 32 (5): 550–560, doi:10.1016/j.cag.2008.01.006
  11. Kim, Hyun-Ju; Min-joon Yoo; Ji-yong Kwon; In-kwon Lee (2009), "Generating affective music icons in the emotion plane", CHI Conference