Distributed-feedback laser

Last updated

A distributed-feedback laser (DFB) is a type of laser diode, quantum-cascade laser or optical-fiber laser where the active region of the device contains a periodically structured element or diffraction grating. The structure builds a one-dimensional interference grating (Bragg scattering), and the grating provides optical feedback for the laser. This longitudinal diffraction grating has periodic changes in refractive index that cause reflection back into the cavity. The periodic change can be either in the real part of the refractive index or in the imaginary part (gain or absorption). The strongest grating operates in the first order, where the periodicity is one-half wave, and the light is reflected backwards. DFB lasers tend to be much more stable than Fabry–Perot or DBR lasers and are used frequently when clean single-mode operation is needed, especially in high-speed fiber-optic telecommunications. Semiconductor DFB lasers in the lowest loss window of optical fibers at about 1.55 μm wavelength, amplified by erbium-doped fiber amplifiers (EDFAs), dominate the long-distance communication market, while DFB lasers in the lowest dispersion window at 1.3 μm are used at shorter distances.

The simplest kind of laser is a Fabry–Perot laser, where there are two broad-band reflectors at the two ends of the lasing optical cavity. The light bounces back and forth between these two mirrors and forms longitudinal modes, or standing waves. The back reflector generally has high reflectivity, and the front mirror has lower reflectivity. The light then leaks out of the front mirror and forms the output of the laser diode. [1] Since the mirrors are generally broad-band and reflect many wavelengths, the laser supports multiple longitudinal modes, or standing waves, simultaneously and lases multimode, or easily jumps between longitudinal modes. If the temperature of a semiconductor Fabry–Perot laser changes, the wavelengths that are amplified by the lasing medium vary rapidly. At the same time, the longitudinal modes of the laser also vary, as the refractive index is also a function of temperature. This causes the spectrum to be unstable and highly temperature-dependent. At the important wavelengths of 1.55 μm and 1.3 μm, the peak gain typically moves about 0.4 nm to the longer wavelengths as the temperature increases, while the longitudinal modes shift about 0.1 nm to the longer wavelengths.

If one or both of these end mirrors are replaced with a diffraction grating, the structure is then known as a DBR laser (distributed Bragg reflector). These longitudinal diffraction-grating mirrors reflect the light back in the cavity, very much like a multi-layer mirror coating. The diffraction-grating mirrors tend to reflect a narrower band of wavelengths than normal end mirrors, and this limits the number of standing waves that can be supported by the gain in the cavity. So DBR lasers tend to be more spectrally stable than Fabry–Perot lasers with broadband coatings. Nevertheless, as the temperature or current changes in the laser, the device can "mode-hop", jumping from one standing wave to another. The overall shifts with temperature are, however, lower with DBR lasers, as the mirrors determine which longitudinal modes lase, and they shift with the refractive index and not the peak gain.

In a DFB laser, the grating and the reflection is generally continuous along the cavity, instead of just being at the two ends. This changes the modal behavior considerably and makes the laser more stable. There are various designs of DFB lasers, each with slightly different properties.

If the grating is periodic and continuous, and the ends of the laser are anti-reflection (AR/AR) coated, so there is no feedback other than the grating itself, then such a structure supports two longitudinal (degenerate) modes and almost always lases at two wavelengths. Obviously, a two-moded laser is generally not desirable. So there are various ways of breaking this "degeneracy".

The first is by inducing a quarter-wave shift in the cavity. This phase-shift acts like a "defect" and creates a resonance in the center of the reflectivity bandwidth or "stop-band". The laser then lases at this resonance and is extremely stable. As the temperature and current changes, the grating and the cavity shift together at the lower rate of the refractive-index change, and there are no mode hops. However, light is emitted from both sides of the lasers, and generally the light from one side is wasted. Furthermore, creating an exact quarter-wave shift can be technologically difficult to achieve, and often requires directly written electron-beam lithography. Often, rather than a single quarter-wave phase shift at the center of the cavity, multiple smaller shifts distributed in the cavity at different locations that spread out the mode longitudinally and give higher output power.

An alternate way of breaking this degeneracy is by coating the back end of the laser to a high reflectivity (HR). The exact position of this end reflector cannot be accurately controlled, and so one obtains a random phase shift between the grating and the exact position of the end mirror. Sometimes this leads to a perfect phase shift, where effectively a quarter-wave phase shifted DFB is reflected on itself. In this case all the light exits the front facet, and one obtains a very stable laser. At other times, however, the phase shift between the grating and the high-reflector back mirror is not optimal, and one ends up with a two-moded lasers again. Additionally, the phase of the cleave affects the wavelength, and thus controlling the output wavelength of a batch of lasers in manufacturing can be a challenge. [2] Thus the HR/AR DFB lasers tend to have low yield and must be screened before use. There are various combinations of coatings and phase shifts that can be optimized for power and yield, and generally each manufacturer has their own technique to optimize performance and yield.

To encode data on a DFB laser for fiber-optic communications, generally the electric drive current is varied to modulate the intensity of the light. These DMLs (directly modulated lasers) are the simplest kinds and are found in various fiber-optic systems. The disadvantage of directly modulating a laser is that there are associated frequency shifts together with the intensity shifts (laser chirp). These frequency shifts, together with dispersion in the fiber, cause the signal to degrade after some distance, limiting the bandwidth and the range. An alternate structure is an electro-absorption modulated laser (EML) that runs the laser continuously and has a separate section integrated in front that either absorbs or transmits the light  very much like an optical shutter. These EMLs can operate at higher speeds and have much lower chirp. In very high-performance coherent optical communication systems, the DFB laser is run continuously and is followed by a phase modulator. On the receiving end, a local oscillator DFB interferes with the received signal and decodes the modulation. [3]

An alternative approach is a phase-shifted DFB laser. In this case, both facets are anti-reflection coated, and there is a phase shift in the cavity. Such devices have much better reproducibility in wavelength and theoretically all lase in single mode.

In DFB fiber lasers, the Bragg grating (which in this case forms also the cavity of the laser) has a phase-shift centered in the reflection band akin to a single very narrow transmission notch of a Fabry–Pérot interferometer. When configured properly, these lasers operate on a single longitudinal mode with coherence lengths in excess of tens of kilometres, essentially limited by the temporal noise induced by the self-heterodyne coherence detection technique used to measure the coherence. These DFB fibre lasers are often used in sensing applications where extreme narrow line width is required.

Related Research Articles

<span class="mw-page-title-main">Laser diode</span> Semiconductor laser

A laser diode is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with electrical current can create lasing conditions at the diode's junction.

Mode locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s). A laser operated in this way is sometimes referred to as a femtosecond laser, for example, in modern refractive surgery. The basis of the technique is to induce a fixed phase relationship between the longitudinal modes of the laser's resonant cavity. Constructive interference between these modes can cause the laser light to be produced as a train of pulses. The laser is then said to be "phase-locked" or "mode-locked".

Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Dye laser</span> Equipment using an organic dye to emit coherent light

A dye laser is a laser that uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths, often spanning 50 to 100 nanometers or more. The wide bandwidth makes them particularly suitable for tunable lasers and pulsed lasers. The dye rhodamine 6G, for example, can be tuned from 635 nm (orangish-red) to 560 nm (greenish-yellow), and produce pulses as short as 16 femtoseconds. Moreover, the dye can be replaced by another type in order to generate an even broader range of wavelengths with the same laser, from the near-infrared to the near-ultraviolet, although this usually requires replacing other optical components in the laser as well, such as dielectric mirrors or pump lasers.

<span class="mw-page-title-main">Vertical-cavity surface-emitting laser</span> Type of semiconductor laser diode

The vertical-cavity surface-emitting laser is a type of semiconductor laser diode with laser beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers which emit from surfaces formed by cleaving the individual chip out of a wafer. VCSELs are used in various laser products, including computer mice, fiber optic communications, laser printers, Face ID, and smartglasses.

<span class="mw-page-title-main">Optical cavity</span> Arrangement of mirrors forming a cavity resonator for light waves

An optical cavity, resonating cavity or optical resonator is an arrangement of mirrors or other optical elements that forms a cavity resonator for light waves. Optical cavities are a major component of lasers, surrounding the gain medium and providing feedback of the laser light. They are also used in optical parametric oscillators and some interferometers. Light confined in the cavity reflects multiple times, producing modes with certain resonance frequencies. Modes can be decomposed into longitudinal modes that differ only in frequency and transverse modes that have different intensity patterns across the cross section of the beam. Many types of optical cavity produce standing wave modes.

In electromagnetism, Brillouin scattering, named after Léon Brillouin, refers to the interaction of light with the material waves in a medium. It is mediated by the refractive index dependence on the material properties of the medium; as described in optics, the index of refraction of a transparent material changes under deformation.

<span class="mw-page-title-main">Tunable laser</span>

A tunable laser is a laser whose wavelength of operation can be altered in a controlled manner. While all laser gain media allow small shifts in output wavelength, only a few types of lasers allow continuous tuning over a significant wavelength range.

A Raman laser is a specific type of laser in which the fundamental light-amplification mechanism is stimulated Raman scattering. In contrast, most "conventional" lasers rely on stimulated electronic transitions to amplify light.

Quantum-cascade lasers (QCLs) are semiconductor lasers that emit in the mid- to far-infrared portion of the electromagnetic spectrum and were first demonstrated by Jérôme Faist, Federico Capasso, Deborah Sivco, Carlo Sirtori, Albert Hutchinson, and Alfred Cho at Bell Laboratories in 1994.

<span class="mw-page-title-main">Longitudinal mode</span> Standing wave patterns of resonator cavities

A longitudinal mode of a resonant cavity is a particular standing wave pattern formed by waves confined in the cavity. The longitudinal modes correspond to the wavelengths of the wave which are reinforced by constructive interference after many reflections from the cavity's reflecting surfaces. All other wavelengths are suppressed by destructive interference.

<span class="mw-page-title-main">Fiber Bragg grating</span> Type of distributed Bragg reflector constructed in a short segment of optical fiber

A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror. Hence a fiber Bragg grating can be used as an inline optical filter to block certain wavelengths, can be used for sensing applications, or it can be used as wavelength-specific reflector.

<span class="mw-page-title-main">Distributed Bragg reflector</span> Structure used in waveguides

A distributed Bragg reflector (DBR) is a reflector used in waveguides, such as optical fibers. It is a structure formed from multiple layers of alternating materials with different refractive index, or by periodic variation of some characteristic of a dielectric waveguide, resulting in periodic variation in the effective refractive index in the guide. Each layer boundary causes a partial reflection and refraction of an optical wave. For waves whose vacuum wavelength is close to four times the optical thickness of the layers, the interaction between these beams generates constructive interference, and the layers act as a high-quality reflector. The range of wavelengths that are reflected is called the photonic stopband. Within this range of wavelengths, light is "forbidden" to propagate in the structure.

This is a list of acronyms and other initialisms used in laser physics and laser applications.

A fiber laser is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and holmium. They are related to doped fiber amplifiers, which provide light amplification without lasing.

Volume holograms are holograms where the thickness of the recording material is much larger than the light wavelength used for recording. In this case diffraction of light from the hologram is possible only as Bragg diffraction, i.e., the light has to have the right wavelength (color) and the wave must have the right shape. Volume holograms are also called thick holograms or Bragg holograms.

<span class="mw-page-title-main">Fourier domain mode locking</span>

Fourier domain mode locking (FDML) is a laser modelocking technique that creates a continuous wave, wavelength-swept light output.

<span class="mw-page-title-main">Yasuharu Suematsu</span> Japanese scientist

Yasuharu Suematsu is a researcher and educator in optical communication technology. His research has included the development of Dynamic Single Mode Semiconductor Lasers for actuation and the development of high-capacity, long-distance optical fiber communications technology.

<span class="mw-page-title-main">Distributed Bragg reflector laser</span>

A distributed Bragg reflector laser (DBR) is a type of single frequency laser diode. Other practical types of single frequency laser diodes include DFB lasers and external cavity diode lasers. A fourth type, the cleaved-coupled-cavity laser has not proven to be commercially viable. VCSELs are also single frequency devices. The DBR laser structure is fabricated with surface features that define a monolithic, single mode ridge waveguide that runs the entire length of the device. A resonant cavity is defined by a highly reflective DBR mirror on one end, and a low reflectivity cleaved exit facet on the other end. Within the cavity is a gain ridge portion, where current is injected to produce a single spatial lasing mode. The DBR mirror is designed to reflect only a single longitudinal mode. As a result, the laser operates on a single spatial and longitudinal mode. The laser emits from the exit facet opposite the DBR end. The DBR is continuously tunable over approximately a 2 nm range by changing current or temperature. The temperature coefficient is approximately 0.07 nm/K, and the current coefficient is approximately 0.003 nm/mA. DBR lasers are stable, low noise optical sources. When operated with a low noise power supply at constant temperature, edge emitting DBR lasers have a linewidth of less than 10 MHz. Power levels typically can run up to several hundred milliwatts.

<span class="mw-page-title-main">Virtually imaged phased array</span> Dispersive optical device

A virtually imaged phased array (VIPA) is an angular dispersive device that, like a prism or a diffraction grating, splits light into its spectral components. The device works almost independently of polarization. In contrast to prisms or regular diffraction gratings, the VIPA has a much higher angular dispersion but has a smaller free spectral range. This aspect is similar to that of an Echelle grating, since it also uses high diffraction orders. To overcome this disadvantage, the VIPA can be combined with a diffraction grating. The VIPA is a compact spectral disperser with high wavelength resolving power.

References

  1. "The World's Most Informative CNC Source". cncsourced. 2023-12-13. Retrieved 2023-12-21.
  2. See for example: Yariv, Amnon (1985). Quantum Electronics (3rd ed.). New York: Holt, Reinhart and Wilson. pp. 421–429.
  3. Archived (Date missing) at eagleyard.com (Error: unknown archive URL) (Fa. Eagleyard, Ausgründung des Ferdinand-Braun-Institutes Berlin)