Docosapentaenoic acid

Last updated

Docosapentaenoic acid (DPA) designates any straight open chain polyunsaturated fatty acid (PUFA) which contains 22 carbons and 5 double bonds. DPA is primarily used to designate two isomers, all-cis-4,7,10,13,16-docosapentaenoic acid (i.e. 4Z,7Z,10Z,13Z,16Z-docosapentaenoic acid) and all-cis-7,10,13,16,19-docosapentaenoic acid (i.e. 7Z,10Z,13Z,16Z,19Z-docosapentaenoic acid). They are also commonly termed n-6 DPA and n-3 DPA, respectively; these designations describe the position of the double bond being 6 or 3 carbons closest to the (omega) carbon at the methyl end of the molecule and is based on the biologically important difference that n-6 and n-3 PUFA are separate PUFA classes, i.e. the omega-6 fatty acids and omega-3 fatty acids, respectively. Mammals, including humans, can not interconvert these two classes and therefore must obtain dietary essential PUFA fatty acids from both classes in order to maintain normal health (see essential fatty acids). [1] [2]

Contents

Isomers

The two isomers osbond acid and clupanodonic acid have the same number of double bonds, but on different positions along the chain, so they are regioisomers.

all-cis-4,7,10,13,16-docosapentaenoic acid (osbond acid)

The chemical structure of osbond acid showing physiological numbering (red) and chemical numbering (blue) conventions. Osbond acid.png
The chemical structure of osbond acid showing physiological numbering (red) and chemical numbering (blue) conventions.

n-6 DPA is an ω-6 fatty acid with the trivial name osbond acid. It is formed in two steps from eicosatetraenoic acid (5,8,11,14-20:4n-6 or arachidonic acid, AA). Arachidonic acid is elongated to docosatetraenoic acid (7,10,13,16-22:4n-6 or adrenic acid, AdA), which in turn is converted by Δ4-desaturase to osbond acid. [3]

all-cis-7,10,13,16,19-docosapentaenoic acid (clupanodonic acid)

The chemical structure of clupanodonic acid showing physiological numbering (red) and chemical numbering (blue) conventions. DPAnumbering.png
The chemical structure of clupanodonic acid showing physiological numbering (red) and chemical numbering (blue) conventions.

n-3 DPA is an n-3 fatty acid with the trivial name clupanodonic acid. It is an intermediate compound between eicosapentaenoic acid (EPA 5,8,11,14,17-20:5n-3 or timnodonic acid) and docosahexaenoic acid (DHA 4,7,10,13,16,19-22:6n-3 or cervonic acid) in the metabolic pathway of DHA in eucaryotes. Eicosapentaenoic acid is elongated to clupanodonic acid, which in turn is converted by Δ4-desaturase to docosahexaenoic acid 22:6n-3 (see Docosahexaenoic acid § Biosynthesis).

Mammalian cells, including human cells, metabolize DPAn-3 to an array of products that are members of the specialized proresolving mediators class of PUFA metabolites. These metabolites include four resolvins of T series and three of D series (RvT1, RvT2, RvT3, RvT4, RvD1n-3, RvD2n-3, and RvD5n-3 (do not confuse with D series resolvins derived from DHA); see Specialized proresolving mediators § n-3 DPA-derived resolvins and Resolvin), two protectins (PD1n-3 and PD2n-3; see Specialized proresolving mediators § n-3 DPA-derived protectins/neuroprotectins and Neuroprotectin), and three maresins (MaR1n-3, MaR2n-3, and MaR3n-3; see Specialized proresolving mediators § n-3 DPA-derived maresins and Maresin).

Nutrition

Docosapentaenoic acid (DPA) is an n-3 fatty acid that is structurally similar to eicosapentaenoic acid (EPA) with the same number of double bonds, but two more carbon chain units. [4]

Dietary sources

These are the top five sources for DPA according to the USDA Agricultural Research Service: [5]

  1. Fish oil, menhaden 0.668 g in 1 tbsp. (13.6 g)
  2. Fish oil, salmon 0.407 g in 1 tbsp. (13.6 g)
  3. Salmon, red (sockeye), filets with skin, smoked (Alaska Native) 0.335 g in 1 filet (108 g)
  4. Fish, salmon, Atlantic, farmed, raw 0.334 g in 3 oz (85 g)
  5. Beef, variety meats and by-products, brain, cooked, simmered 0.326 g in 3 oz (85 g)

Seal meat and human breast milk are rich in DPA. [4]

Functions

Clupanodonic acid, an omega-3 fatty acid, along with its metabolite DHA and other long chain omega-3 fatty acids, is under study to determine properties of omega-3 fats in humans, such as in inflammation mechanisms. [6]

See also

Related Research Articles

Omega−3 fatty acids, also called Omega−3 oils, ω−3 fatty acids or n−3 fatty acids, are polyunsaturated fatty acids (PUFAs) characterized by the presence of a double bond, three atoms away from the terminal methyl group in their chemical structure. They are widely distributed in nature, being important constituents of animal lipid metabolism, and they play an important role in the human diet and in human physiology. The three types of omega−3 fatty acids involved in human physiology are α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). ALA can be found in plants, while DHA and EPA are found in algae and fish. Marine algae and phytoplankton are primary sources of omega−3 fatty acids. DHA and EPA accumulate in fish that eat these algae. Common sources of plant oils containing ALA include walnuts, edible seeds, and flaxseeds as well as hempseed oil, while sources of EPA and DHA include fish and fish oils, and algae oil.

Essential fatty acids, or EFAs, are fatty acids that humans and other animals must ingest because the body requires them for good health, but cannot synthesize them.

α-Linolenic acid Chemical compound

α-Linolenic acid, also known as alpha-linolenic acid (ALA), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils.

<span class="mw-page-title-main">Eicosanoid</span> Class of compounds

Eicosanoids are signaling molecules made by the enzymatic or non-enzymatic oxidation of arachidonic acid or other polyunsaturated fatty acids (PUFAs) that are, similar to arachidonic acid, around 20 carbon units in length. Eicosanoids are a sub-category of oxylipins, i.e. oxidized fatty acids of diverse carbon units in length, and are distinguished from other oxylipins by their overwhelming importance as cell signaling molecules. Eicosanoids function in diverse physiological systems and pathological processes such as: mounting or inhibiting inflammation, allergy, fever and other immune responses; regulating the abortion of pregnancy and normal childbirth; contributing to the perception of pain; regulating cell growth; controlling blood pressure; and modulating the regional flow of blood to tissues. In performing these roles, eicosanoids most often act as autocrine signaling agents to impact their cells of origin or as paracrine signaling agents to impact cells in the proximity of their cells of origin. Eicosanoids may also act as endocrine agents to control the function of distant cells.

<span class="mw-page-title-main">Eicosapentaenoic acid</span> Chemical compound

Eicosapentaenoic acid is an omega-3 fatty acid. In physiological literature, it is given the name 20:5(n-3). It also has the trivial name timnodonic acid. In chemical structure, EPA is a carboxylic acid with a 20-carbon chain and five cis double bonds; the first double bond is located at the third carbon from the omega end.

<span class="mw-page-title-main">Docosahexaenoic acid</span> Chemical compound

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is a primary structural component of the human brain, cerebral cortex, skin, and retina. It is given the fatty acid notation 22:6(n-3). It can be synthesized from alpha-linolenic acid or obtained directly from maternal milk, fatty fish, fish oil, or algae oil. The consumption of DHA contributes to numerous physiological benefits, including cognition. As the primary structural component of nerve cells in the brain, the function of DHA is to support neuronal conduction and to allow optimal function of neuronal membrane proteins.

<span class="mw-page-title-main">Resolvin</span> Class of chemical compounds

Resolvins are specialized pro-resolving mediators (SPMs) derived from omega-3 fatty acids, primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as well as from two isomers of docosapentaenoic acid (DPA), one omega-3 and one omega-6 fatty acid. As autacoids similar to hormones acting on local tissues, resolvins are under preliminary research for their involvement in promoting restoration of normal cellular function following the inflammation that occurs after tissue injury. Resolvins belong to a class of polyunsaturated fatty acid (PUFA) metabolites termed specialized proresolving mediators (SPMs).

<span class="mw-page-title-main">Neuroprotection</span> Relative preservation of neuronal structure and/or function

Neuroprotection refers to the relative preservation of neuronal structure and/or function. In the case of an ongoing insult the relative preservation of neuronal integrity implies a reduction in the rate of neuronal loss over time, which can be expressed as a differential equation. It is a widely explored treatment option for many central nervous system (CNS) disorders including neurodegenerative diseases, stroke, traumatic brain injury, spinal cord injury, and acute management of neurotoxin consumption. Neuroprotection aims to prevent or slow disease progression and secondary injuries by halting or at least slowing the loss of neurons. Despite differences in symptoms or injuries associated with CNS disorders, many of the mechanisms behind neurodegeneration are the same. Common mechanisms of neuronal injury include decreased delivery of oxygen and glucose to the brain, energy failure, increased levels in oxidative stress, mitochondrial dysfunction, excitotoxicity, inflammatory changes, iron accumulation, and protein aggregation. Of these mechanisms, neuroprotective treatments often target oxidative stress and excitotoxicity—both of which are highly associated with CNS disorders. Not only can oxidative stress and excitotoxicity trigger neuron cell death but when combined they have synergistic effects that cause even more degradation than on their own. Thus limiting excitotoxicity and oxidative stress is a very important aspect of neuroprotection. Common neuroprotective treatments are glutamate antagonists and antioxidants, which aim to limit excitotoxicity and oxidative stress respectively.

Arachidonate 5-lipoxygenase, also known as ALOX5, 5-lipoxygenase, 5-LOX, or 5-LO, is a non-heme iron-containing enzyme that in humans is encoded by the ALOX5 gene. Arachidonate 5-lipoxygenase is a member of the lipoxygenase family of enzymes. It transforms essential fatty acids (EFA) substrates into leukotrienes as well as a wide range of other biologically active products. ALOX5 is a current target for pharmaceutical intervention in a number of diseases.

In biochemistry, docosanoids are signaling molecules made by the metabolism of twenty-two-carbon fatty acids (EFAs), especially the omega-3 fatty acid, docosahexaenoic acid (DHA) by lipoxygenase, cyclooxygenase, and cytochrome P450 enzymes. Other docosanoids are metabolites of n-3 docosapentaenoic acid (DPA), n-6 DPA, and docosatetraenoic acid. Prominent docosanoid metabolites of DPA and n-3 DHA are members of the specialized pro-resolving mediators class of polyunsaturated fatty acid metabolites that possess potent anti-inflammation, tissue healing, and other activities.

<span class="mw-page-title-main">ALOX15</span> Lipoxygenase found in humans

ALOX15 is, like other lipoxygenases, a seminal enzyme in the metabolism of polyunsaturated fatty acids to a wide range of physiologically and pathologically important products. ▼ Gene Function

<span class="mw-page-title-main">NAGly receptor</span> Protein-coding gene in the species Homo sapiens

N-Arachidonyl glycine receptor, also known as G protein-coupled receptor 18 (GPR18), is a protein that in humans is encoded by the GPR18 gene. Along with the other previously "orphan" receptors GPR55 and GPR119, GPR18 has been found to be a receptor for endogenous lipid neurotransmitters, several of which also bind to cannabinoid receptors. It has been found to be involved in the regulation of intraocular pressure.

<span class="mw-page-title-main">GPR32</span> Human biochemical receptor

G protein-coupled receptor 32, also known as GPR32 or the RvD1 receptor, is a human receptor (biochemistry) belonging to the rhodopsin-like subfamily of G protein-coupled receptors.

<span class="mw-page-title-main">Oxylipin</span> Class of lipids

Oxylipins constitute a family of oxygenated natural products which are formed from fatty acids by pathways involving at least one step of dioxygen-dependent oxidation. Oxylipins are derived from polyunsaturated fatty acids (PUFAs) by COX enzymes (cyclooxygenases), by LOX enzymes (lipoxygenases), or by cytochrome P450 epoxygenase.

In cell biology, efferocytosis is the process by which apoptotic cells are removed by phagocytic cells. It can be regarded as the 'burying of dead cells'.

<span class="mw-page-title-main">Maresin</span> Chemical compound

Maresin 1 (MaR1 or 7R,14S-dihydroxy-4Z,8E,10E,12Z,16Z,19Z-docosahexaenoic acid) is a macrophage-derived mediator of inflammation resolution coined from macrophage mediator in resolving inflammation. Maresin 1, and more recently defined maresins, are 12-lipoxygenase-derived metabolites of the omega-3 fatty acid, docosahexaenoic acid (DHA), that possess potent anti-inflammatory, pro-resolving, protective, and pro-healing properties similar to a variety of other members of the specialized proresolving mediators (SPM) class of polyunsaturated fatty acid (PUFA) metabolites. SPM are dihydroxy, trihydroxy, and epoxy-hydroxy metabolites of long chain PUFA made by certain dioxygenase enzymes viz., cyclooxygenases and lipoxygenases. In addition to the maresins, this class of mediators includes: the 15-lipoxygenase (i.e. ALOX15 and/or possibly ALOX15B)-derived Lipoxin A4 and B4 metabolites of the omega 6 fatty acid, arachidonic acid; the cyclooxygenase 2-derived Resolvin E series metabolites of the omega 3 fatty acid, eicosapentaenoic acid; certain 15-lipoxygenase-derived Resolvin D series metabolites of DHA; certain other 15-lipoxygenase-derived protectin D1 and related metabolites of DHA; and the more recently defined and therefore less fully studied 15-lipoxygenase-derived Resolvin Dn-3DPA metabolites of the omega-3 fatty acid n-3 docosapentaenoic acid (n-3 DPA or clupanodonic acid), the cyclooxygenase 2-derived Resolvin T metabolites of this clupanodonic acid, and the 15-lipoxygenase-derived products of the N-acetylated fatty acid amide of the DHA metabolite, docosahexaenoyl ethanolamide (see resolvins).

Protectin D1 also known as neuroprotectin D1 and abbreviated most commonly as PD1 or NPD1 is a member of the class of specialized proresolving mediators. Like other members of this class of polyunsaturated fatty acid metabolites, it possesses strong anti-inflammatory, anti-apoptotic and neuroprotective activity. PD1 is an aliphatic acyclic alkene 22 carbons in length with two hydroxyl groups at the 10 and 17 carbon positions and one carboxylic acid group at the one carbon position.

<span class="mw-page-title-main">Epoxydocosapentaenoic acid</span> Group of chemical compounds

Epoxide docosapentaenoic acids are metabolites of the 22-carbon straight-chain omega-3 fatty acid, docosahexaenoic acid (DHA). Cell types that express certain cytochrome P450 (CYP) epoxygenases metabolize polyunsaturated fatty acids (PUFAs) by converting one of their double bonds to an epoxide. In the best known of these metabolic pathways, cellular CYP epoxygenases metabolize the 20-carbon straight-chain omega-6 fatty acid, arachidonic acid, to epoxyeicosatrienoic acids (EETs); another CYP epoxygenase pathway metabolizes the 20-carbon omega-3 fatty acid, eicosapentaenoic acid (EPA), to epoxyeicosatetraenoic acids (EEQs). CYP epoxygenases similarly convert various other PUFAs to epoxides. These epoxide metabolites have a variety of activities. However, essentially all of them are rapidly converted to their corresponding, but in general far less active, vicinal dihydroxy fatty acids by ubiquitous cellular soluble epoxide hydrolase. Consequently, these epoxides, including EDPs, operate as short-lived signaling agents that regulate the function of their parent or nearby cells. The particular feature of EDPs distinguishing them from EETs is that they derive from omega-3 fatty acids and are suggested to be responsible for some of the beneficial effects attributed to omega-3 fatty acids and omega-3-rich foods such as fish oil.

Specialized pro-resolving mediators are a large and growing class of cell signaling molecules formed in cells by the metabolism of polyunsaturated fatty acids (PUFA) by one or a combination of lipoxygenase, cyclooxygenase, and cytochrome P450 monooxygenase enzymes. Pre-clinical studies, primarily in animal models and human tissues, implicate SPM in orchestrating the resolution of inflammation. Prominent members include the resolvins and protectins.

Dihydroxy-E,Z,E-PUFA are metabolites of polyunsaturated fatty acids (PUFA) that possess two hydroxyl residues and three in series conjugated double bonds having the E,Z,E cis-trans configuration. These recently classified metabolites are distinguished from the many other dihydroxy-PUFA with three conjugated double bonds that do not have this critical E,Z,E configuration: they inhibit the function of platelets and therefore may be involved in controlling and prove useful for inhibiting human diseases which involve the pathological activation of these blood-borne elements.

References

  1. Edwards IJ, O'Flaherty JT (2008). "Omega-3 Fatty Acids and PPARgamma in Cancer". PPAR Research. 2008: 358052. doi: 10.1155/2008/358052 . PMC   2526161 . PMID   18769551.
  2. Spector AA, Kim HY (2015). "Discovery of essential fatty acids". Journal of Lipid Research. 56 (1): 11–21. doi: 10.1194/jlr.R055095 . PMC   4274059 . PMID   25339684.
  3. Djuricic I, Calder PC (July 2021). "Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021". Nutrients. 13 (7). Figure 3. doi: 10.3390/nu13072421 .
  4. 1 2 Yazdi, PG (Nov 2013). "A review of the biologic and pharmacologic role of docosapentaenoic acid n-3". F1000Res. 2: 256. doi: 10.12688/f1000research.2-256.v2 . PMC   4162505 . PMID   25232466.
  5. "DPA Nutrient List." National Nutrient Database for Standard Reference Release 27.
  6. Dalli, J; Chiang, N; Serhan, C. N. (2015). "Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections" (PDF). Nature Medicine. 21 (9): 1071–5. doi:10.1038/nm.3911. PMC   4560998 . PMID   26236990.