Double hull

Last updated
Single hull, Double bottom, and Double hull ship cross sections. Green lines are watertight; black structure is not watertight DoubleBottomDoubleHull.png
Single hull, Double bottom, and Double hull ship cross sections. Green lines are watertight; black structure is not watertight

A double hull is a ship hull design and construction method where the bottom and sides of the ship have two complete layers of watertight hull surface: one outer layer forming the normal hull of the ship, and a second inner hull which is some distance inboard, typically by a few feet, which forms a redundant barrier to seawater in case the outer hull is damaged and leaks.

Contents

The space between the two hulls is sometimes used for storage of ballast water.

Double hulls are a more extensive safety measure than double bottoms, which have two hull layers only in the bottom of the ship but not the sides. In low-energy collisions, double hulls can prevent flooding beyond the penetrated compartment. In high-energy collisions, however, the distance to the inner hull is not sufficient and the inner compartment is penetrated as well.

Double hulls or double bottoms have been required in all passenger ships for decades as part of the Safety Of Life At Sea or SOLAS Convention. [1]

Uses

Double hulls are significantly safer than double bottoms, which in turn are safer than single bottoms. In case of grounding or other underwater damage, most of the time the damage is limited to flooding the bottom compartment, and the main occupied areas of the ship remain intact.

In low-energy collisions to the sides of the vessel, double hulls also prevent flooding beyond the penetrated compartment. In high-energy collisions, however, the distance to the inner hull is not sufficient and the inner compartment is penetrated as well.

A double bottom or hull also conveniently forms a stiff and strong girder or beam structure with the two hull plating layers as upper and lower plates for a composite beam. This greatly strengthens the hull in secondary hull bending and strength, and to some degree in primary hull bending and strength.

Double hulls can also:

Oil tankers

Double hulls' ability to prevent or reduce oil spills led to double hulls being standardized for other types of ships including oil tankers by the International Convention for the Prevention of Pollution from Ships or MARPOL Convention. A double hull does not protect against major, high-energy collisions or groundings which cause the majority of oil pollution, despite this being the reason that the double hull was mandated by United States legislation. [2] After the Exxon Valdez oil spill disaster, when that ship grounded on Bligh Reef outside the port of Valdez, Alaska, the US Government required all new oil tankers built for use between US ports to be equipped with a full double hull.

Submarines

In submarine hulls, the double hull structure is significantly different, consisting of an outer light hull and inner pressure hull, with the outer hull intended more to provide a hydrodynamic shape for the submarine than the cylindrical inner pressure hull. In addition to tailoring the flow of water around the submarine (also known as hydrodynamic bypass), this outer skin serves as a mounting point for anechoic tiles, which are designed specifically to absorb sound rather than reflect it, helping to hide the vessel from sonar detection.

See also

Related Research Articles

A double-hulled tanker refers to an oil tanker which has a double hull. They reduce the likelihood of leaks occurring compared to single-hulled tankers, and their ability to prevent or reduce oil spills led to double hulls being standardized for oil tankers and other types of ships including by the International Convention for the Prevention of Pollution from Ships or MARPOL Convention. After the Exxon Valdez oil spill disaster in Alaska in 1989, the US government required all new oil tankers built for use between US ports to be equipped with a full double hull.

<i>Exxon Valdez</i> oil spill 1989 industrial disaster in Alaska

The Exxon Valdez oil spill occurred in the Prince William Sound, Alaska, on March 24, 1989. Exxon Valdez, an oil supertanker owned by Exxon Shipping Company bound for Long Beach, California struck Prince William Sound's Bligh Reef, 6 mi (9.7 km) west of Tatitlek, Alaska at 12:04 a.m. and spilled 10.8 million US gallons (260,000 bbl) of crude oil over the next few days.

<span class="mw-page-title-main">International Maritime Organization</span> Specialised agency of the United Nations

The International Maritime Organization is a specialised agency of the United Nations responsible for regulating shipping. The IMO was established following agreement at a UN conference held in Geneva in 1948 and the IMO came into existence ten years later, meeting for the first time in 17 March 1958. Headquartered in London, United Kingdom, IMO currently has 175 Member States and three Associate Members.

Ship Large watercraft

A ship is a large vessel that travels the world's oceans and other navigable waterways, carrying cargo or passengers, or in support of specialized missions, such as defense, research and fishing. Ships are generally distinguished from boats, based on size, shape, load capacity and purpose. Ships have supported exploration, trade, warfare, migration, colonization, and science. Ship transport is responsible for the largest portion of world commerce.

<span class="mw-page-title-main">Naval architecture</span> Engineering discipline dealing with the design and construction of marine vessels

Naval architecture, or naval engineering, is an engineering discipline incorporating elements of mechanical, electrical, electronic, software and safety engineering as applied to the engineering design process, shipbuilding, maintenance, and operation of marine vessels and structures. Naval architecture involves basic and applied research, design, development, design evaluation (classification) and calculations during all stages of the life of a marine vehicle. Preliminary design of the vessel, its detailed design, construction, trials, operation and maintenance, launching and dry-docking are the main activities involved. Ship design calculations are also required for ships being modified. Naval architecture also involves formulation of safety regulations and damage-control rules and the approval and certification of ship designs to meet statutory and non-statutory requirements.

Ballast is used in ships to provide moment to resist the lateral forces on the hull. Insufficiently ballasted boats tend to tip or heel excessively in high winds. Too much heel may result in the vessel capsizing. If a sailing vessel needs to voyage without cargo, then ballast of little or no value will be loaded to keep the vessel upright. Some or all of this ballast will then be discarded when cargo is loaded.

<span class="mw-page-title-main">Ship floodability</span> Susceptibility of a ships construction to flooding

Floodability is the susceptibility of a ship's construction to flooding. It also refers to the ability to intentionally flood certain areas of the hull for damage control purposes, or to increase stability, which is particularly important in combat vessels, which often face the possibility of serious hull breach due to enemy action, and which rely on well-trained damage controlmen to equalize and then stop flooding of the hull.

<span class="mw-page-title-main">Marine engineering</span> Engineering and design of shipboard systems

Marine engineering is the engineering of boats, ships, submarines, and any other marine vessel. Here it is also taken to include the engineering of other ocean systems and structures – referred to in certain academic and professional circles as “ocean engineering.”

<span class="mw-page-title-main">Ballast tank</span> Compartment for holding liquid ballast

A ballast tank is a compartment within a boat, ship or other floating structure that holds water, which is used as ballast to provide hydrostatic stability for a vessel, to reduce or control buoyancy, as in a submarine, to correct trim or list, to provide a more even load distribution along the hull to reduce structural hogging or sagging stresses, or to increase draft, as in a semi-submersible vessel or platform, or a SWATH, to improve seakeeping. Using water in a tank provides easier weight adjustment than the stone or iron ballast used in older vessels, and makes it easy for the crew to reduce a vessel's draft when it enters shallower water, by temporarily pumping out ballast. Airships use ballast tanks mainly to control buoyancy and correct trim.

<span class="mw-page-title-main">Submarine hull</span> Structural and hydrodynamic component enclosing the vessel

A submarine hull has two major components, the light hull and the pressure hull. The light hull of a submarine is the outer non-watertight hull which provides a hydrodynamically efficient shape. The pressure hull is the inner hull of a submarine that maintains structural integrity with the difference between outside and inside pressure at depth.

<span class="mw-page-title-main">Mid-deck tanker</span>

A mid-deck oil tanker is a tanker design which includes an additional deck intended to limit spills if the tanker is damaged. The extra deck is placed at about the middle of the draft of the ship. This design is an alternative to the double-hull tanker design, and is superior in terms of spill volume.

The stability conditions of watercraft are the various standard loading configurations to which a ship, boat, or offshore platform may be subjected. They are recognized by classification societies such as Det Norske Veritas, Lloyd's Register and American Bureau of Shipping (ABS). Classification societies follow rules and guidelines laid down by International Convention for the Safety of Life at Sea (SOLAS) conventions, the International Maritime Organization and laws of the country under which the vessel is flagged, such as the Code of Federal Regulations.

<span class="mw-page-title-main">Anti-torpedo bulge</span> Form of defence against naval torpedoes

The anti-torpedo bulge is a form of defence against naval torpedoes occasionally employed in warship construction in the period between the First and Second World Wars. It involved fitting partially water-filled compartmentalized sponsons on either side of a ship's hull, intended to detonate torpedoes, absorb their explosions, and contain flooding to damaged areas within the bulges.

<span class="mw-page-title-main">Ship grounding</span> Impact of a ship on seabed or waterway side

Ship grounding or ship stranding is the impact of a ship on seabed or waterway side. It may be intentional, as in beaching to land crew or cargo, and careening, for maintenance or repair, or unintentional, as in a marine accident. In accidental cases, it is commonly referred to as "running aground".

Oil tanker Ship that carries oil

An oil tanker, also known as a petroleum tanker, is a ship designed for the bulk transport of oil or its products. There are two basic types of oil tankers: crude tankers and product tankers. Crude tankers move large quantities of unrefined crude oil from its point of extraction to refineries. Product tankers, generally much smaller, are designed to move refined products from refineries to points near consuming markets.

<span class="mw-page-title-main">Coulombi egg tanker</span>

The Coulombi egg tanker is a design that is aimed at reducing oil spills. It was approved by the International Maritime Organization (IMO) as an alternative to the double hull concept. The United States Coast Guard does not allow this design to enter US waters, effectively preventing it from being built.

Oil tankers generally have from 8 to 12 tanks. Each tank is split into two or three independent compartments by fore-and-aft bulkheads. The tanks are numbered with tank one being the forwardmost. Individual compartments are referred to by the tank number and the athwartships position, such as "one port", "three starboard", or "six center."

Corrosion in Ballast Tanks is the deterioration process where the surface of a ballast tank progresses from microblistering, to hydroscaletric electration, and finally to cracking of the tank steel itself.

SS <i>Kanguroo</i>

SS Kanguroo was a French heavy-lift ship built to transport submarines before World War I. She delivered submarines to Brazil and Peru before the war began. Requisitioned in 1914 by the French Navy, she was torpedoed by a German submarine in late 1916 and sunk at Funchal, Madeira.

<span class="mw-page-title-main">Compartment (ship)</span> Portion of the space within a ship

A compartment is a portion of the space within a ship defined vertically between decks and horizontally between bulkheads. It is analogous to a room within a building, and may provide watertight subdivision of the ship's hull important in retaining buoyancy if the hull is damaged. Subdivision of a ship's hull into watertight compartments is called compartmentation.

References

  1. "Chapter II-1: Construction - Structure, subdivision and stability, machinery and electrical installations, Regulation 12: Double bottoms in passenger ships" (PDF), International Convention for the Safety of Life at Sea (SOLAS), International Maritime Organization (IMO), 2004 [1974], p. 51, archived from the original (PDF) on 28 July 2012, retrieved 17 July 2012
  2. Jack Devanney (2006): The Tankship Tromedy, The Impending Disasters in Tankers, CTX Press, Tavernier, Florida, ISBN   0-9776479-0-0