A double hull is a ship hull design and construction method where the bottom and sides of the ship have two complete layers of watertight hull surface: one outer layer forming the normal hull of the ship, and a second inner hull which is some distance inboard, typically by a few feet, which forms a redundant barrier to seawater in case the outer hull is damaged and leaks.
The space between the two hulls is sometimes used for storage of ballast water.
Double hulls are a more extensive safety measure than double bottoms, which have two hull layers only in the bottom of the ship but not the sides. In low-energy collisions, double hulls can prevent flooding beyond the penetrated compartment. In high-energy collisions, however, the distance to the inner hull is not sufficient and the inner compartment is penetrated as well.
Double hulls or double bottoms have been required in all passenger ships for decades as part of the Safety Of Life At Sea or SOLAS Convention. [1]
Double hulls are significantly safer than double bottoms, which in turn are safer than single bottoms. In case of grounding or other underwater damage, most of the time the damage is limited to flooding the bottom compartment, and the main occupied areas of the ship remain intact.
In low-energy collisions to the sides of the vessel, double hulls also prevent flooding beyond the penetrated compartment. In high-energy collisions, however, the distance to the inner hull is not sufficient and the inner compartment is penetrated as well.
A double bottom or hull also conveniently forms a stiff and strong girder or beam structure with the two hull plating layers as upper and lower plates for a composite beam. This greatly strengthens the hull in secondary hull bending and strength, and to some degree in primary hull bending and strength.
Double hulls can also:
Double hulls' ability to prevent or reduce oil spills led to double hulls being standardized for other types of ships including oil tankers by the International Convention for the Prevention of Pollution from Ships or MARPOL Convention. A double hull does not protect against major, high-energy collisions or groundings which cause the majority of oil pollution, despite this being the reason that the double hull was mandated by United States legislation. [2] After the Exxon Valdez oil spill disaster, when that ship grounded on Bligh Reef outside the port of Valdez, Alaska, the US Government required all new oil tankers built for use between US ports to be equipped with a full double hull.
In submarine hulls, the double hull structure is significantly different, consisting of an outer light hull and inner pressure hull, with the outer hull intended more to provide a hydrodynamic shape for the submarine than the cylindrical inner pressure hull. It was introduced in the late 1890s by Maxime Laubeuf on French submarine Narval. In addition to tailoring the flow of water around the submarine (also known as hydrodynamic bypass), this outer skin serves as a mounting point for anechoic tiles, which are designed specifically to absorb sound rather than reflect it, helping to hide the vessel from sonar detection.
Leonardo da Vinci proposed the double-hulled ship design to protect against ramming and underwater damage from reefs or wreckage. Even if the outer hull was breached, the ship would remain afloat due to the second hull. [3]
A double-hulled tanker refers to an oil tanker which has a double hull. They reduce the likelihood of leaks occurring compared to single-hulled tankers, and their ability to prevent or reduce oil spills led to double hulls being standardized for oil tankers and other types of ships including by the International Convention for the Prevention of Pollution from Ships or MARPOL Convention. After the Exxon Valdez oil spill disaster in Alaska in 1989, the US government required all new oil tankers built for use between US ports to be equipped with a full double hull.
The Exxon Valdez oil spill was a major environmental disaster that made worldwide headlines in the spring of 1989 and occurred in Alaska's Prince William Sound on March 24, 1989. The spill occurred when Exxon Valdez, an oil supertanker owned by Exxon Shipping Company, bound for Long Beach, California, struck Prince William Sound's Bligh Reef, 6 mi (9.7 km) west of Tatitlek, Alaska at 12:04 a.m. The tanker spilled more than 10 million US gallons (240,000 bbl) of crude oil over the next few days.
The International Maritime Organization is a specialised agency of the United Nations responsible for regulating maritime transport. The IMO was established following agreement at a UN conference held in Geneva in 1948 and the IMO came into existence ten years later, meeting for the first time on 17 March 1958. Headquartered in London, United Kingdom, the IMO, in 2024, has 176 Member States and three Associate Members.
A ship is a large vessel that travels the world's oceans and other navigable waterways, carrying cargo or passengers, or in support of specialized missions, such as defense, research and fishing. Ships are generally distinguished from boats, based on size, shape, load capacity and purpose. Ships have supported exploration, trade, warfare, migration, colonization, and science. Ship transport is responsible for the largest portion of world commerce.
Exxon Valdez was an oil tanker that gained notoriety after running aground in Prince William Sound, spilling her cargo of crude oil into the sea. On 24 March 1989, while owned by the former Exxon Shipping Company, captained by Joseph Hazelwood and First Mate James Kunkel, and bound for Long Beach, California, the vessel ran aground on the Bligh Reef, resulting in the second largest oil spill in United States history. The size of the spill is estimated to have been 40,900 to 120,000 m3. In 1989, the Exxon Valdez oil spill was listed as the 54th-largest spill in history.
USS M-1 (SS-47) was a unique submarine of the United States Navy. Although built as a fully operational boat, M-1 was built with a radically different double-hulled design. This was in marked contrast to Simon Lake's and Electric Boat's single-hulled concepts. Ultimately shown to be unsuccessful, no other submarines of this class were built, although future advances in construction and metallurgy science made the double hull design a standard one for the USN.
Floodability is the susceptibility of a ship's construction to flooding. It also refers to the ability to intentionally flood certain areas of the hull for damage control purposes, or to increase stability, which is particularly important in combat vessels, which often face the possibility of serious hull breach due to enemy action, and which rely on well-trained damage controlmen to equalize and then stop flooding of the hull.
Marine engineering is the engineering of boats, ships, submarines, and any other marine vessel. Here it is also taken to include the engineering of other ocean systems and structures – referred to in certain academic and professional circles as "ocean engineering". After completing this degree one can join a ship as an officer in engine department and eventually rise to the rank of a chief engineer. This rank is one of the top ranks onboard and is equal to the rank of a ship's captain. Marine engineering is the highly preferred course to join merchant Navy as an officer as it provides ample opportunities in terms of both onboard and onshore jobs.
A ballast tank is a compartment within a boat, ship or other floating structure that holds water, which is used as ballast to provide hydrostatic stability for a vessel, to reduce or control buoyancy, as in a submarine, to correct trim or list, to provide a more even load distribution along the hull to reduce structural hogging or sagging stresses, or to increase draft, as in a semi-submersible vessel or platform, or a SWATH, to improve seakeeping. Using water in a tank provides easier weight adjustment than the stone or iron ballast used in older vessels, and makes it easy for the crew to reduce a vessel's draft when it enters shallower water, by temporarily pumping out ballast. Airships use ballast tanks mainly to control buoyancy and correct trim.
The free surface effect is a mechanism which can cause a watercraft to become unstable and capsize.
A submarine hull has two major components, the light hull and the pressure hull. The light hull of a submarine is the outer non-watertight hull which provides a hydrodynamically efficient shape. The pressure hull is the inner hull of a submarine that maintains structural integrity with the difference between outside and inside pressure at depth.
A mid-deck oil tanker is a tanker design which includes an additional deck intended to limit spills if the tanker is damaged. The extra deck is placed at about the middle of the draft of the ship. This design is an alternative to the double-hull tanker design, and is superior in terms of spill volume.
The stability conditions of watercraft are the various standard loading configurations to which a ship, boat, or offshore platform may be subjected. They are recognized by classification societies such as Det Norske Veritas, Lloyd's Register and American Bureau of Shipping (ABS). Classification societies follow rules and guidelines laid down by International Convention for the Safety of Life at Sea (SOLAS) conventions, the International Maritime Organization and laws of the country under which the vessel is flagged, such as the Code of Federal Regulations.
Ship stability is an area of naval architecture and ship design that deals with how a ship behaves at sea, both in still water and in waves, whether intact or damaged. Stability calculations focus on centers of gravity, centers of buoyancy, the metacenters of vessels, and on how these interact.
The anti-torpedo bulge is a form of defence against naval torpedoes occasionally employed in warship construction in the period between the First and Second World Wars. It involved fitting partially water-filled compartmentalized sponsons on either side of a ship's hull, intended to detonate torpedoes, absorb their explosions, and contain flooding to damaged areas within the bulges.
Ship grounding or ship stranding is the impact of a ship on seabed or waterway side. It may be intentional, as in beaching to land crew or cargo, and careening, for maintenance or repair, or unintentional, as in a marine accident. In accidental cases, it is commonly referred to as "running aground".
An oil tanker, also known as a petroleum tanker, is a ship designed for the bulk transport of oil or its products. There are two basic types of oil tankers: crude tankers and product tankers. Crude tankers move large quantities of unrefined crude oil from its point of extraction to refineries. Product tankers, generally much smaller, are designed to move refined products from refineries to points near consuming markets.
The Coulombi egg tanker is a design that is aimed at reducing oil spills. It was approved by the International Maritime Organization (IMO) as an alternative to the double hull concept. The United States Coast Guard does not allow this design to enter US waters, effectively preventing it from being built.
Oil tankers generally have from 8 to 12 tanks. Each tank is split into two or three independent compartments by fore-and-aft bulkheads. The tanks are numbered with tank one being the forwardmost. Individual compartments are referred to by the tank number and the athwartships position, such as "one port", "three starboard", or "six center."
A compartment is a portion of the space within a ship defined vertically between decks and horizontally between bulkheads. It is analogous to a room within a building, and may provide watertight subdivision of the ship's hull important in retaining buoyancy if the hull is damaged. Subdivision of a ship's hull into watertight compartments is called compartmentation.