Drift (telecommunication)

Last updated

In telecommunication, a drift is a comparatively long-term change in an attribute, value, or operational parameter of a system or equipment. The drift should be characterized, such as "diurnal frequency drift" and "output level drift." Drift is usually undesirable and unidirectional, but may be bidirectional, cyclic, or of such long-term duration and low excursion rate as to be negligible. [1]

Drift is also common in pseudo-synchronised streaming applications, such as low-latency audio streaming over TCP/IP. Normally both ends of a streaming connection would stay in-sync with a master clock but TCP/IP does not provide this 'master clock' mechanism. Therefore, applications running fixed clocks will drift apart over time and glitches will occur. This is usually fixed by controlling jitter or drift, by slightly altering the clock speed at one end of the connection.

Related Research Articles

The Internet protocol suite is the conceptual model and set of communications protocols used in the Internet and similar computer networks. It is commonly known as TCP/IP because the foundational protocols in the suite are the Transmission Control Protocol (TCP) and the Internet Protocol (IP). During its development, versions of it were known as the Department of Defense (DoD) model because the development of the networking method was funded by the United States Department of Defense through DARPA. Its implementation is a protocol stack.

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP, which is part of the Transport Layer of the TCP/IP suite. SSL/TLS often runs on top of TCP.

In computer networking, the User Datagram Protocol (UDP) is one of the core members of the Internet protocol suite. The protocol was designed by David P. Reed in 1980 and formally defined in RFC 768. With UDP, computer applications can send messages, in this case referred to as datagrams, to other hosts on an Internet Protocol (IP) network. Prior communications are not required in order to set up communication channels or data paths.

A virtual circuit (VC) is a means of transporting data over a packet-switched network in such a way that it appears as though there is a dedicated physical link between the source and destination end systems of this data. The term virtual circuit is synonymous with virtual connection. A virtual channel is a type of virtual circuit.

A network packet is a formatted unit of data carried by a packet-switched network. A packet consists of control information and user data, which is also known as the payload. Control information provides data for delivering the payload, for example: source and destination network addresses, codes, and sequencing information. Typically, control information is found in packet headers and trailers.

Network address translation Protocol facilitating connection of one IP address space to another

Network address translation (NAT) is a method of remapping an IP address space into another by modifying network address information in the IP header of packets while they are in transit across a traffic routing device. The technique was originally used to avoid the need to assign a new address to every host when a network was moved, or when the upstream Internet service provider was replaced, but could not route the networks address space. It has become a popular and essential tool in conserving global address space in the face of IPv4 address exhaustion. One Internet-routable IP address of a NAT gateway can be used for an entire private network.

The File Transfer Protocol (FTP) is a standard network protocol used for the transfer of computer files between a client and server on a computer network.

In the seven-layer OSI model of computer networking, the session layer is layer 5.

In computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide host-to-host communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing.

NetBIOS is an acronym for Network Basic Input/Output System. It provides services related to the session layer of the OSI model allowing applications on separate computers to communicate over a local area network. As strictly an API, NetBIOS is not a networking protocol. Older operating systems ran NetBIOS over IEEE 802.2 and IPX/SPX using the NetBIOS Frames (NBF) and NetBIOS over IPX/SPX (NBX) protocols, respectively. In modern networks, NetBIOS normally runs over TCP/IP via the NetBIOS over TCP/IP (NBT) protocol. This results in each computer in the network having both an IP address and a NetBIOS name corresponding to a host name.

Network congestion in data networking and queueing theory is the reduced quality of service that occurs when a network node or link is carrying more data than it can handle. Typical effects include queueing delay, packet loss or the blocking of new connections. A consequence of congestion is that an incremental increase in offered load leads either only to a small increase or even a decrease in network throughput.

TCP offload engine (TOE) is a technology used in network interface cards (NIC) to offload processing of the entire TCP/IP stack to the network controller. It is primarily used with high-speed network interfaces, such as gigabit Ethernet and 10 Gigabit Ethernet, where processing overhead of the network stack becomes significant.

In computer networks, a tunneling protocol is a communications protocol that allows for the movement of data from one network to another. It involves allowing private network communications to be sent across a public network through a process called encapsulation.

SlipKnot (web browser) web browser

SlipKnot was one of the earliest World Wide Web browsers, available to Microsoft Windows users between November 1994 and January 1998. It was created by Peter Brooks of MicroMind, Inc. to provide a fully graphical view of the web for users without a SLIP or other TCP/IP connection to the net, hence the name - SLIP...not. SlipKnot provided a graphical web experience through what would otherwise be a text-only Unix shell account. SlipKnot version 1.0 was released on November 22, 1994, approximately 3 weeks before Netscape's Netscape Navigator version 1.0 came out. It was designed to serve a significant fraction of PC/Windows-based Internet users who could not use Mosaic or Netscape at that time.

Network performance refers to measures of service quality of a network as seen by the customer.

Nagle's algorithm is a means of improving the efficiency of TCP/IP networks by reducing the number of packets that need to be sent over the network. It was defined by John Nagle while working for Ford Aerospace. It was published in 1984 as a Request for Comments (RFC) with title Congestion Control in IP/TCP Internetworks.

A network socket is an internal endpoint for sending or receiving data within a node on a computer network. Concretely, it is a representation of this endpoint in networking software, such as an entry in a table, and is a form of system resource.

TCP reset attack, also known as "forged TCP resets", "spoofed TCP reset packets" or "TCP reset attacks", is a way to tamper and terminate the Internet connection by sending a forged TCP reset packet. This tampering technique can be used by a firewall in goodwill, or abused by a malicious attacker to interrupt Internet connections.

The Stream Control Transmission Protocol (SCTP) is a computer networking communications protocol which operates at the transport layer and serves a role similar to the popular protocols TCP and UDP. It is standardized by IETF in RFC 4960.

QUIC is a general-purpose transport layer network protocol initially designed by Jim Roskind at Google, implemented, and deployed in 2012, announced publicly in 2013 as experimentation broadened, and described to the IETF. While still an Internet Draft, QUIC is used by more than half of all connections from the Chrome web browser to Google's servers. Microsoft Edge and Firefox support it, even if not enabled by default, as does Safari Technology Preview.

References

See also