Du Val singularity

Last updated

In algebraic geometry, a Du Val singularity, also called simple surface singularity, Kleinian singularity, or rational double point, is an isolated singularity of a complex surface which is modeled on a double branched cover of the plane, with minimal resolution obtained by replacing the singular point with a tree of smooth rational curves, with intersection pattern dual to a Dynkin diagram of A-D-E singularity type. They are the canonical singularities (or, equivalently, rational Gorenstein singularities) in dimension 2. They were studied by Patrick du Val [1] [2] [3] and Felix Klein.

Contents

The Du Val singularities also appear as quotients of by a finite subgroup of SL2; equivalently, a finite subgroup of SU(2), which are known as binary polyhedral groups. [4] The rings of invariant polynomials of these finite group actions were computed by Klein, and are essentially the coordinate rings of the singularities; this is a classic result in invariant theory. [5] [6]

Classification

Du Val singularies are classified by the simply laced Dynkin diagrams, a form of ADE classification. Simply Laced Dynkin Diagrams.svg
Du Val singularies are classified by the simply laced Dynkin diagrams, a form of ADE classification.

The possible Du Val singularities are (up to analytical isomorphism):

See also

Related Research Articles

<span class="mw-page-title-main">Elliptic curve</span> Algebraic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for:

<span class="mw-page-title-main">Calabi–Yau manifold</span> Riemannian manifold with SU(n) holonomy

In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring theory, the extra dimensions of spacetime are sometimes conjectured to take the form of a 6-dimensional Calabi–Yau manifold, which led to the idea of mirror symmetry. Their name was coined by Candelas et al. (1985), after Eugenio Calabi who first conjectured that such surfaces might exist, and Shing-Tung Yau (1978) who proved the Calabi conjecture.

In mathematics, the Weil conjectures were highly influential proposals by André Weil (1949). They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

<span class="mw-page-title-main">Birational geometry</span> Field of algebraic geometry

In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways.

In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. Hypersurfaces share, with surfaces in a three-dimensional space, the property of being defined by a single implicit equation, at least locally, and sometimes globally.

<span class="mw-page-title-main">Cubic surface</span>

In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space, and so cubic surfaces are generally considered in projective 3-space . The theory also becomes more uniform by focusing on surfaces over the complex numbers rather than the real numbers; note that a complex surface has real dimension 4. A simple example is the Fermat cubic surface

<span class="mw-page-title-main">K3 surface</span> Type of smooth complex surface of kodaira dimension 0

In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with а trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected algebraic surface that satisfies the same conditions. In the Enriques–Kodaira classification of surfaces, K3 surfaces form one of the four classes of minimal surfaces of Kodaira dimension zero. A simple example is the Fermat quartic surface

In mathematics, more particularly in the field of algebraic geometry, a scheme has rational singularities, if it is normal, of finite type over a field of characteristic zero, and there exists a proper birational map

In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

In algebraic geometry, a quartic plane curve is a plane algebraic curve of the fourth degree. It can be defined by a bivariate quartic equation:

In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968). All these concepts were further generalized to mixed Hodge modules over complex varieties by Morihiko Saito (1989).

Patrick du Val was a British mathematician, known for his work on algebraic geometry, differential geometry, and general relativity. The concept of Du Val singularity of an algebraic surface is named after him.

In mathematics, canonical singularities appear as singularities of the canonical model of a projective variety, and terminal singularities are special cases that appear as singularities of minimal models. They were introduced by Reid (1980). Terminal singularities are important in the minimal model program because smooth minimal models do not always exist, and thus one must allow certain singularities, namely the terminal singularities.

A system of polynomial equations is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k.

References

  1. du Val, Patrick (1934a). "On isolated singularities of surfaces which do not affect the conditions of adjunction, Entry I". Proceedings of the Cambridge Philosophical Society . 30 (4): 453–459. doi:10.1017/S030500410001269X. S2CID   251095858. Archived from the original on 9 May 2022.
  2. du Val, Patrick (1934b). "On isolated singularities of surfaces which do not affect the conditions of adjunction, Entry II". Proceedings of the Cambridge Philosophical Society . 30 (4): 460–465. doi:10.1017/S0305004100012706. S2CID   197459819. Archived from the original on 13 May 2022.
  3. du Val, Patrick (1934c). "On isolated singularities of surfaces which do not affect the conditions of adjunction, Entry III". Proceedings of the Cambridge Philosophical Society . 30 (4): 483–491. doi:10.1017/S030500410001272X. S2CID   251095521. Archived from the original on 9 May 2022.
  4. Barth, Wolf P.; Hulek, Klaus; Peters, Chris A.M.; Van de Ven, Antonius (2004). Compact Complex Surfaces. Ergebnisse der Mathematik und ihre Grenzbereiche. 3. Teil (Results of mathematics and their border areas. 3rd Part). Vol. 4. Springer-Verlag, Berlin. pp. 197–200. ISBN   978-3-540-00832-3. MR   2030225. OCLC   642357691. Archived from the original on 2022-05-09. Retrieved 2022-05-09.
  5. Artin, Michael (1966). "On isolated rational singularities of surfaces". American Journal of Mathematics . 88 (1): 129–136. doi:10.2307/2373050. ISSN   0002-9327. JSTOR   2373050. MR   0199191.
  6. Durfee, Alan H. (1979). "Fifteen characterizations of rational double points and simple critical points". L'Enseignement mathématique . IIe Série. European Mathematical Society Publishing House. 25 (1): 131–163. doi:10.5169/seals-50375. ISSN   0013-8584. MR   0543555. Archived from the original on 2022-05-09. Retrieved 2022-05-09.