In abstract algebra, a dualizing module, also called a canonical module, is a module over a commutative ring that is analogous to the canonical bundle of a smooth variety. It is used in Grothendieck local duality.
In algebra, which is a broad division of mathematics, abstract algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras. The term abstract algebra was coined in the early 20th century to distinguish this area of study from the other parts of algebra.
In mathematics, a module is one of the fundamental algebraic structures used in abstract algebra. A module over a ring is a generalization of the notion of vector space over a field, wherein the corresponding scalars are the elements of an arbitrary given ring and a multiplication is defined between elements of the ring and elements of the module.
In ring theory, a branch of abstract algebra, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of noncommutative rings where multiplication is not required to be commutative.
A dualizing module for a Noetherian ring R is a finitely generated module M such that for any maximal ideal m, the R/m vector space Extn
R(R/m,M) vanishes if n ≠ height(m) and is 1-dimensional if n = height(m).
In mathematics, more specifically in the area of abstract algebra known as ring theory, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals, which means there is no infinite ascending sequence of left ideals; that is, given any chain of left ideals,
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated R-module also may be called a finite R-module, finite over R, or a module of finite type.
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal amongst all proper ideals. In other words, I is a maximal ideal of a ring R if there are no other ideals contained between I and R.
A dualizing module need not be unique because the tensor product of any dualizing module with a rank 1 projective module is also a dualizing module. However this is the only way in which the dualizing module fails to be unique: given any two dualizing modules, one is isomorphic to the tensor product of the other with a rank 1 projective module. In particular if the ring is local the dualizing module is unique up to isomorphism.
In mathematics, the tensor productV ⊗ W of two vector spaces V and W is itself a vector space, endowed with the operation of bilinear composition, denoted by ⊗, from ordered pairs in the Cartesian product V × W onto V ⊗ W in a way that generalizes the outer product. The tensor product of V and W is the vector space generated by the symbols v ⊗ w, with v ∈ V and w ∈ W, in which the relations of bilinearity are imposed for the product operation ⊗, and no other relations are assumed to hold. The tensor product space is thus the "freest" such vector space, in the sense of having the fewest constraints.
In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules over a ring, by keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below.
A Noetherian ring does not necessarily have a dualizing module. Any ring with a dualizing module must be Cohen–Macaulay. Conversely if a Cohen–Macaulay ring is a quotient of a Gorenstein ring then it has a dualizing module. In particular any complete local Cohen–Macaulay ring has a dualizing module. For rings without a dualizing module it is sometimes possible to use the dualizing complex as a substitute.
In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways.
In commutative algebra, a Gorenstein local ring is a commutative Noetherian local ring R with finite injective dimension as an R-module. There are many equivalent conditions, some of them listed below, often saying that a Gorenstein ring is self-dual in some sense.
If R is a Gorenstein ring, then R considered as a module over itself is a dualizing module.
If R is an Artinian local ring then the Matlis module of R (the injective hull of the residue field) is the dualizing module.
In abstract algebra, an Artinian ring is a ring that satisfies the descending chain condition on ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are named after Emil Artin, who first discovered that the descending chain condition for ideals simultaneously generalizes finite rings and rings that are finite-dimensional vector spaces over fields. The definition of Artinian rings may be restated by interchanging the descending chain condition with an equivalent notion: the minimum condition.
In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules.
The Artinian local ring R = k[x,y]/(x2,y2,xy) has a unique dualizing module, but it is not isomorphic to R.
The ring Z[√–5] has two non-isomorphic dualizing modules, corresponding to the two classes of invertible ideals.
The local ring k[x,y]/(y2,xy) is not Cohen–Macaulay so does not have a dualizing module.
In mathematics, a ring is one of the fundamental algebraic structures used in abstract algebra. It consists of a set equipped with two binary operations that generalize the arithmetic operations of addition and multiplication. Through this generalization, theorems from arithmetic are extended to non-numerical objects such as polynomials, series, matrices and functions.
In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.
Commutative algebra is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.
In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.
Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.
In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, then any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is dual to that of projective modules. Injective modules were introduced in and are discussed in some detail in the textbook.
In commutative algebra, a regular sequence is a sequence of elements of a commutative ring which are as independent as possible, in a precise sense. This is the algebraic analogue of the geometric notion of a complete intersection.
In commutative algebra, a complete intersection ring is a commutative ring similar to the coordinate rings of varieties that are complete intersections. Informally, they can be thought of roughly as the local rings that can be defined using the "minimum possible" number of relations.
In commutative and homological algebra, depth is an important invariant of rings and modules. Although depth can be defined more generally, the most common case considered is the case of modules over a commutative Noetherian local ring. In this case, the depth of a module is related with its projective dimension by the Auslander–Buchsbaum formula. A more elementary property of depth is the inequality
In mathematics, a commutative ring R is catenary if for any pair of prime ideals
In abstract algebra, an associated prime of a module M over a ring R is a type of prime ideal of R that arises as an annihilator of a (prime) submodule of M. The set of associated primes is usually denoted by .
In commutative algebra, an integrally closed domainA is an integral domain whose integral closure in its field of fractions is A itself. Many well-studied domains are integrally closed: Fields, the ring of integers Z, unique factorization domains and regular local rings are all integrally closed.
In mathematics, more specifically abstract algebra and ring theory, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exists a and b in R with a·b ≠ b·a. Many authors use the term noncommutative ring to refer to rings which are not necessarily commutative, and hence include commutative rings in their definition. Noncommutative algebra is the study of results applying to rings that are not required to be commutative. Many important results in the field of noncommutative algebra area apply to commutative rings as special cases.
This is a glossary of commutative algebra.
Nicolas Bourbaki is the collective pseudonym of a group of mathematicians. Their aim is to reformulate mathematics on an extremely abstract and formal but self-contained basis in a series of books beginning in 1935. With the goal of grounding all of mathematics on set theory, the group strives for rigour and generality. Their work led to the discovery of several concepts and terminologies still used, and influenced modern branches of mathematics.
The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.