Duncan Wingham

Last updated

Sir Duncan John Wingham (born 12 October 1957) is a British physicist who is Professor of Climate Physics at University College London, and was the first Director of the Centre for Polar Observation & Modelling. He is chief executive of the Natural Environment Research Council and Principal Scientist for the CryoSat Satellite Mission. [1]

In the 1990s, Wingham was involved in a four-year satellite study of the Antarctic ice sheet. His conclusion then, and from later research, is that the Antarctic has contributed little to observed rising sea levels in the 20th century. However, he has also stated that "it is possible that the consequences of global warming on sea level rise have been underestimated... Other sources of rise must be underestimated. In particular it is possible that the effect of global warming on thermal expansion [on the oceans] is larger than we thought". [2]

In a 2005 interview Wingham stated "[t]he Antarctic is to some extent insulated from global warming because to its north are zonal flows in the atmosphere and ocean, unimpeded by other landmasses... I am not denying global warming." [3]

Wingham was knighted in the 2020 New Year Honours for services to climate science. [4]

Related Research Articles

<span class="mw-page-title-main">Cryosphere</span> Those portions of Earths surface where water is in solid form

The cryosphere is an all-encompassing term for those portions of Earth's surface where water is in solid form, including sea ice, lake ice, river ice, snow cover, glaciers, ice caps, ice sheets, and frozen ground. Thus, there is a wide overlap with the hydrosphere. The cryosphere is an integral part of the global climate system with important linkages and feedbacks generated through its influence on surface energy and moisture fluxes, clouds, precipitation, hydrology, atmospheric and oceanic circulation. Through these feedback processes, the cryosphere plays a significant role in the global climate and in climate model response to global changes. Approximately 10% of the Earth's surface is covered by ice, but this is rapidly decreasing. The term deglaciation describes the retreat of cryospheric features. Cryology is the study of cryospheres.

<span class="mw-page-title-main">Climate of Antarctica</span> Overview of the climate of Antarctica

The climate of Antarctica is the coldest on Earth. The continent is also extremely dry, averaging 166 mm (6.5 in) of precipitation per year. Snow rarely melts on most parts of the continent, and, after being compressed, becomes the glacier ice that makes up the ice sheet. Weather fronts rarely penetrate far into the continent, because of the katabatic winds. Most of Antarctica has an ice-cap climate with very cold, generally extremely dry weather.

<span class="mw-page-title-main">Amundsen Sea</span> Arm of the Southern Ocean

The Amundsen Sea is an arm of the Southern Ocean off Marie Byrd Land in western Antarctica. It lies between Cape Flying Fish to the east and Cape Dart on Siple Island to the west. Cape Flying Fish marks the boundary between the Amundsen Sea and the Bellingshausen Sea. West of Cape Dart there is no named marginal sea of the Southern Ocean between the Amundsen and Ross Seas. The Norwegian expedition of 1928–1929 under Captain Nils Larsen named the body of water for the Norwegian polar explorer Roald Amundsen while exploring this area in February 1929.

<span class="mw-page-title-main">West Antarctic Ice Sheet</span> Segment of the continental ice sheet that covers West (or Lesser) Antarctica

The Western Antarctic Ice Sheet (WAIS) is the segment of the continental ice sheet that covers West Antarctica, the portion of Antarctica on the side of the Transantarctic Mountains that lies in the Western Hemisphere. The WAIS is classified as a marine-based ice sheet, meaning that its bed lies well below sea level and its edges flow into floating ice shelves. The WAIS is bounded by the Ross Ice Shelf, the Ronne Ice Shelf, and outlet glaciers that drain into the Amundsen Sea.

<span class="mw-page-title-main">Larsen Ice Shelf</span> Ice shelf in Antarctica

The Larsen Ice Shelf is a long ice shelf in the northwest part of the Weddell Sea, extending along the east coast of the Antarctic Peninsula from Cape Longing to Smith Peninsula. It is named after Captain Carl Anton Larsen, the master of the Norwegian whaling vessel Jason, who sailed along the ice front as far as 68°10' South during December 1893. In finer detail, the Larsen Ice Shelf is a series of shelves that occupy distinct embayments along the coast. From north to south, the segments are called Larsen A, Larsen B, and Larsen C by researchers who work in the area. Further south, Larsen D and the much smaller Larsen E, F and G are also named.

<span class="mw-page-title-main">John A. Church</span>

John Alexander Church is an expert on sea level and its changes. He was co-convening lead author for the chapter on Sea Level in the IPCC Third Assessment Report. He was also a co-convening lead author for the IPCC Fifth Assessment Report. He is a member of the Joint Scientific Committee of the WCRP. He was a project leader at CSIRO, until 2016. He is currently a professor with the University of New South Wales' Climate Change Research Centre.

<span class="mw-page-title-main">Pine Island Glacier</span> Large ice stream, fastest melting glacier in Antarctica

Pine Island Glacier (PIG) is a large ice stream, and the fastest melting glacier in Antarctica, responsible for about 25% of Antarctica's ice loss. The glacier ice streams flow west-northwest along the south side of the Hudson Mountains into Pine Island Bay, Amundsen Sea, Antarctica. It was mapped by the United States Geological Survey (USGS) from surveys and United States Navy (USN) air photos, 1960–66, and named by the Advisory Committee on Antarctic Names (US-ACAN) in association with Pine Island Bay.

<span class="mw-page-title-main">Thwaites Glacier</span> Antarctic glacier

Thwaites Glacier, nicknamed the Doomsday Glacier, is an unusually broad and vast Antarctic glacier flowing into Pine Island Bay, part of the Amundsen Sea, east of Mount Murphy, on the Walgreen Coast of Marie Byrd Land. Its surface speeds exceed 2 kilometres per year near its grounding line. Its fastest-flowing grounded ice is centered between 50 and 100 kilometres east of Mount Murphy. In 1967, the Advisory Committee on Antarctic Names named the glacier after Fredrik T. Thwaites (1883–1961), a glacial geologist, geomorphologist and professor emeritus at the University of Wisconsin–Madison.

<span class="mw-page-title-main">Atlantic meridional overturning circulation</span> System of currents in the Atlantic Ocean

The Atlantic meridional overturning circulation (AMOC) is part of a global thermohaline circulation in the oceans and is the zonally integrated component of surface and deep currents in the Atlantic Ocean. It is characterized by a northward flow of warm, salty water in the upper layers of the Atlantic, and a southward flow of colder, deep waters. These "limbs" are linked by regions of overturning in the Nordic and Labrador Seas and the Southern Ocean, although the extent of overturning in the Labrador Sea is disputed. The AMOC is an important component of the Earth's climate system, and is a result of both atmospheric and thermohaline drivers.

<span class="mw-page-title-main">Tim Naish</span> New Zealand scientist (born 1951)

Timothy Raymond Naish is a New Zealand glaciologist and climate scientist who has been a researcher and lecturer at Victoria University of Wellington and the Director of the Antarctic Research Centre, and in 2020 became a programme leader at the Antarctic Science Platform. Naish has researched and written about the possible effect of melting ice sheets in Antarctica on global sea levels due to high CO2 emissions causing warming in the Southern Ocean. He was instrumental in establishing and leading the Antarctica Drilling Project (ANDRILL), and a Lead Author on the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (2014).

<span class="mw-page-title-main">Antarctica cooling controversy</span> Part of the public debate in the global warming controversy

The Antarctica cooling controversy was the result of an apparent contradiction in the observed cooling behavior of Antarctica between 1966 and 2000, which became part of the public debate in the global warming controversy, particularly between advocacy groups of both sides in the public arena including politicians, as well as the popular media. In his novel State of Fear, Michael Crichton asserted that the Antarctic data contradicted global warming. The few scientists who have commented on the supposed controversy state that there is no contradiction, while the author of the paper whose work inspired Crichton's remarks has said that Crichton misused his results. There is no similar controversy within the scientific community, as the small observed changes in Antarctica are consistent with the small changes predicted by climate models, and because the overall trend since comprehensive observations began is now known to be one of warming.

<span class="mw-page-title-main">East Antarctic Ice Sheet</span> Segment of the continental ice sheet that covers East Antarctica

The East Antarctic Ice Sheet (EAIS) is one of two large ice sheets in Antarctica, and the largest on the entire planet. The EAIS lies between 45° west and 168° east longitudinally.

The Centre for Polar Observation & Modelling (CPOM) is a Natural Environment Research Council (NERC) Centre of Excellence that studies processes in the Earth's polar environments. CPOM conducts research on sea ice, land ice, and ice sheets using satellite observations and numerical models.

<span class="mw-page-title-main">Sea level rise</span> Rise in sea levels due to climate change

Between 1901 and 2018, the average global sea level rose by 15–25 cm (6–10 in), or 1–2 mm per year. This rate is increasing; sea levels are now rising at a rate of 3.7 mm per year. Human-caused climate change is predominantly the cause, as it constantly heats the ocean and melts land-based ice sheets and glaciers. Between 1993 and 2018, thermal expansion of water contributed 42% to sea level rise (SLR); melting of temperate glaciers contributed 21%; Greenland contributed 15%; and Antarctica contributed 8%. Because sea level rise lags changes in Earth temperature, it will continue to accelerate between now and 2050 purely in response to already-occurring warming; whether it continues to accelerate after that depends on human greenhouse gas emissions. If global warming is limited to 1.5 °C (2.7 °F), then sea level rise does not accelerate, but it would still amount to 2–3 m (7–10 ft) over the next 2000 years, while 2–6 m (7–20 ft) would occur if the warming peaks at 2 °C (3.6 °F) and 19–22 metres (62–72 ft) if it peaks at 5 °C (9.0 °F).

<span class="mw-page-title-main">Climate Change: Global Risks, Challenges and Decisions</span>

Climate Change: Global Risks, Challenges and Decisions was a conference on Climate Change held at the Bella Center by the University of Copenhagen. The event was organised with the assistance of other universities in the International Alliance of Research Universities. The stated aim of the conference was to provide "a summary of existing scientific knowledge two years after the last IPCC report." The conference took place on 10–12 March 2009.

<span class="mw-page-title-main">Global warming hiatus</span> Period of little Earth temperature change

A global warming hiatus, also sometimes referred to as a global warming pause or a global warming slowdown, is a period of relatively little change in globally averaged surface temperatures. In the current episode of global warming many such 15-year periods appear in the surface temperature record, along with robust evidence of the long-term warming trend. Such a "hiatus" is shorter than the 30-year periods that climate is classically averaged over.

<span class="mw-page-title-main">Antarctic sea ice</span> Sea ice of the Southern Ocean

Antarctic sea ice is the sea ice of the Southern Ocean. It extends from the far north in the winter and retreats to almost the coastline every summer, getting closer and closer to the coastline every year due to sea ice melting. Sea ice is frozen seawater that is usually less than a few meters thick. This is the opposite of ice shelves, which are formed by glaciers, they float in the sea, and are up to a kilometre thick. There are two subdivisions of sea ice: fast ice, which are attached to land; and ice floes, which are not.

<span class="mw-page-title-main">Human impact on marine life</span>

Human activities affect marine life and marine habitats through overfishing, habitat loss, the introduction of invasive species, ocean pollution, ocean acidification and ocean warming. These impact marine ecosystems and food webs and may result in consequences as yet unrecognised for the biodiversity and continuation of marine life forms.

<span class="mw-page-title-main">Richard Levy (paleoclimatologist)</span> New Zealand climate scientist

Richard Levy is a New Zealand glacial stratigrapher and paleoclimatologist with expertise in microfossil analysis. As a principal scientist at GNS Science he has been involved in international and New Zealand environmental research programmes focussing on the evolution of the Earth's climate and building an understanding of the role of greenhouse gases in causing anthropogenic climate changes, in particular those impacting global sea levels. He has had extensive experience in scientific drilling, leading major projects, including the ANtarctic geological DRILLing (ANDRILL) Program in Antarctica. Since 2018, Levy has co-led the government funded NZ SeaRise programme.

<span class="mw-page-title-main">Rob McKay (scientist)</span> New Zealand scientist

Robert Murray McKay is a paleoceanographer who specialises in sedimentology, stratigraphy and palaeoclimatology, specifically gathering geological evidence to study how marine-based portions of the Antarctic ice sheet behave in response to abrupt climate and oceanic change. He has been involved in examination of marine sedimentary records and glacial deposits to show melting and cooling in Antarctica over the past 65 million years and how this has influenced global sea levels and climate. This has helped climate change scientists overcome uncertainty about how the ice sheets will respond to global warming and how this can be managed effectively in the 21st century. He has participated in international projects including ANDRILL and the International Ocean Discovery Program (IODP), led major New Zealand government-funded research teams and has received several awards in recognition of his work. Since 2023 McKay has been a full professor at Victoria University of Wellington and from 2019, director of the Antarctic Research Centre.

References

  1. "CPOM Website". Archived from the original on 26 May 2007. Retrieved 25 July 2008.
  2. The Independent 16 October 1998 – extracted from:Sandra Amos and Richard Boohan; Aspects of Teaching Secondary Science; Routledge ISBN   0-415-26082-5
  3. Pelle Neroth Taylor; Natural causes to blame, expert claims ; The Register; 24 February 2005
  4. "No. 62866". The London Gazette (Supplement). 28 December 2019. p. N2.

UKRI: Professor Duncan Wingham