Dyadic cubes

Last updated

In mathematics, the dyadic cubes are a collection of cubes in Rn of different sizes or scales such that the set of cubes of each scale partition Rn and each cube in one scale may be written as a union of cubes of a smaller scale. These are frequently used in mathematics (particularly harmonic analysis) as a way of discretizing objects in order to make computations or analysis easier. For example, to study an arbitrary subset of A of Euclidean space, one may instead replace it by a union of dyadic cubes of a particular size that cover the set. One can consider this set as a pixelized version of the original set, and as smaller cubes are used one gets a clearer image of the set A. Most notable appearances of dyadic cubes include the Whitney extension theorem and the Calderón–Zygmund lemma.

Contents

Dyadic cubes in Euclidean space

In Euclidean space, dyadic cubes may be constructed as follows: for each integer k let Δk be the set of cubes in Rn of sidelength 2k and corners in the set

and let Δ be the union of all the Δk.

The most important features of these cubes are the following:

  1. For each integer k, Δk partitions Rn.
  2. All cubes in Δk have the same sidelength, namely 2k.
  3. If the interiors of two cubes Q and R in Δ have nonempty intersection, then either Q is contained in R or R is contained in Q.
  4. Each Q in Δk may be written as a union of 2n cubes in Δk+1 with disjoint interiors.

We use the word "partition" somewhat loosely: for although their union is all of Rn, the cubes in Δk can overlap at their boundaries. These overlaps, however, have zero Lebesgue measure, and so in most applications this slightly weaker form of partition is no hindrance.

It may also seem odd that larger k corresponds to smaller cubes. One can think of k as the degree of magnification. In practice, however, letting Δk be the set of cubes of sidelength 2k or 2k is a matter of preference or convenience.

The one-third trick

One disadvantage to dyadic cubes in Euclidean space is that they rely too much on the specific position of the cubes. For example, for the dyadic cubes Δ described above, it is not possible to contain an arbitrary ball inside some Q in Δ (consider, for example, the unit ball centered at zero). Alternatively, there may be such a cube that contains the ball, but the sizes of the ball and cube are very different. Because of this caveat, it is sometimes useful to work with two or more collections of dyadic cubes simultaneously.

Definition

The following is known as the one-third trick: [1]

Let Δk be the dyadic cubes of scale k as above. Define

This is the set of dyadic cubes in Δk translated by the vector α. For each such α, let Δα be the union of the Δkα over k.

An example application

The appeal of the one-third trick is that one can first prove dyadic versions of a theorem and then deduce "non-dyadic" theorems from those. For example, recall the Hardy-Littlewood Maximal function

where f is a locally integrable function and |B(x, r)| denotes the measure of the ball B(x, r). The Hardy–Littlewood maximal inequality states that for an integrable function f,

for λ > 0 where Cn is some constant depending only on dimension.

This theorem is typically proven using the Vitali Covering Lemma. However, one can avoid using this lemma by proving the above inequality first for the dyadic maximal functions

The proof is similar to the proof of the original theorem, however the properties of the dyadic cubes rid us of the need to use the Vitali covering lemma. We may then deduce the original inequality by using the one-third trick.

Dyadic cubes in metric spaces

Analogues of dyadic cubes may be constructed in some metric spaces. [2] In particular, let X be a metric space with metric d that supports a doubling measure μ, that is, a measure such that for xX and r > 0, one has:

where C > 0 is a universal constant independent of the choice of x and r.

If X supports such a measure, then there exist collections of sets Δk such that they (and their union Δ) satisfy the following:

where c1, c2, and δ are positive constants depending only on the doubling constant C of the measure μ and independent of Q.

These conditions are very similar to the properties for the usual Euclidean cubes described earlier. The last condition says that the area near the boundary of a "cube" Q in Δ is small, which is a property taken for granted in the Euclidean case although is very important for extending results from harmonic analysis to the metric space setting.

See also

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences that are also bounded. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Differential operator</span> Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.

In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations between points. The definition, introduced by Mikhael Gromov, generalizes the metric properties of classical hyperbolic geometry and of trees. Hyperbolicity is a large-scale property, and is very useful to the study of certain infinite groups called Gromov-hyperbolic groups.

In mathematics, the Gauss–Kuzmin–Wirsing operator is the transfer operator of the Gauss map that takes a positive number to the fractional part of its reciprocal. It is named after Carl Gauss, Rodion Kuzmin, and Eduard Wirsing. It occurs in the study of continued fractions; it is also related to the Riemann zeta function.

In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number p, then this root can be lifted to a unique root modulo any higher power of p. More generally, if a polynomial factors modulo p into two coprime polynomials, this factorization can be lifted to a factorization modulo any higher power of p.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

In geometric topology, Busemann functions are used to study the large-scale geometry of geodesics in Hadamard spaces and in particular Hadamard manifolds. They are named after Herbert Busemann, who introduced them; he gave an extensive treatment of the topic in his 1955 book "The geometry of geodesics".

In mathematics, the (linear) Peetre theorem, named after Jaak Peetre, is a result of functional analysis that gives a characterisation of differential operators in terms of their effect on generalized function spaces, and without mentioning differentiation in explicit terms. The Peetre theorem is an example of a finite order theorem in which a function or a functor, defined in a very general way, can in fact be shown to be a polynomial because of some extraneous condition or symmetry imposed upon it.

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

In harmonic analysis in mathematics, a function of bounded mean oscillation, also known as a BMO function, is a real-valued function whose mean oscillation is bounded (finite). The space of functions of bounded mean oscillation (BMO), is a function space that, in some precise sense, plays the same role in the theory of Hardy spaces Hp that the space L of essentially bounded functions plays in the theory of Lp-spaces: it is also called John–Nirenberg space, after Fritz John and Louis Nirenberg who introduced and studied it for the first time.

In mathematics, the Hardy–Littlewood maximal operatorM is a significant non-linear operator used in real analysis and harmonic analysis.

In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions.

In mathematics, the class of Muckenhoupt weightsAp consists of those weights ω for which the Hardy–Littlewood maximal operator is bounded on Lp(). Specifically, we consider functions f on Rn and their associated maximal functions M( f ) defined as

In mathematics, the ATS theorem is the theorem on the approximation of a trigonometric sum by a shorter one. The application of the ATS theorem in certain problems of mathematical and theoretical physics can be very helpful.

In mathematics, the Butcher group, named after the New Zealand mathematician John C. Butcher by Hairer & Wanner (1974), is an infinite-dimensional Lie group first introduced in numerical analysis to study solutions of non-linear ordinary differential equations by the Runge–Kutta method. It arose from an algebraic formalism involving rooted trees that provides formal power series solutions of the differential equation modeling the flow of a vector field. It was Cayley (1857), prompted by the work of Sylvester on change of variables in differential calculus, who first noted that the derivatives of a composition of functions can be conveniently expressed in terms of rooted trees and their combinatorics.

The analyst's traveling salesman problem is an analog of the traveling salesman problem in combinatorial optimization. In its simplest and original form, it asks which plane sets are subsets of rectifiable curves of finite length. Whereas the original traveling salesman problem asks for the shortest way to visit every vertex in a finite set with a discrete path, this analytical version may require the curve to visit infinitely many points.

References

  1. Okikiolu, Kate (1992). "Characterization of subsets of rectifiable curves in Rn". J. London Math. Soc. Series 2. 46 (2): 336–348.
  2. Christ, Michael (1990). "A T(b) theorem with remarks on analytic capacity and the Cauchy integral". Colloq. Math. 60/61 (2): 601–628.