Earth-return telegraph

Last updated

Part of the Russian-American Telegraph line bearing the single wire of an earth-return circuit, c. 1866 Collin's overland telegraph.jpg
Part of the Russian–American Telegraph line bearing the single wire of an earth-return circuit, c. 1866

Earth-return telegraph is the system whereby the return path for the electric current of a telegraph circuit is provided by connection to the earth through an earth electrode. Using earth return saves a great deal of money on installation costs since it halves the amount of wire that is required, with a corresponding saving on the labour required to string it. The benefits of doing this were not immediately noticed by telegraph pioneers, but it rapidly became the norm after the first earth-return telegraph was put into service by Carl August von Steinheil in 1838.

Contents

Earth-return telegraph began to have problems towards the end of the 19th century due to the introduction of electric trams. These seriously disturbed earth-return operation and some circuits were returned to the old metal-conductor return system. At the same time, the rise of telephony, which was even more intolerant to the interference on earth-return systems, started to displace electrical telegraphy altogether, bringing to an end the earth-return technique in telecommunications.

Description

A disused pole of the Australian Overland Telegraph Line which used to carry four lines using an earth-return Pole4 of Transaustralien Telegraph Line.jpg
A disused pole of the Australian Overland Telegraph Line which used to carry four lines using an earth-return

A telegraph line between two telegraph offices, like all electrical circuits, requires two conductors to form a complete circuit. This usually means two distinct metal wires in the circuit, but in the earth-return circuit one of these is replaced by connections to earth (also called ground) to complete the circuit. Connection to earth is made by means of metal plates with a large surface area buried deeply in the ground. These plates could be made of copper or galvanised iron. Other methods include connecting to metal gas or water pipes where these are available, or laying a long wire rope on damp ground. The latter method is not very reliable, but was common in India up to 1868. [1]

Soil has poor resistivity compared to copper wires, but the Earth is such a large body that it effectively forms a conductor with an enormous cross-sectional area and high conductance. [2] It is only necessary to ensure that there is good contact with the Earth at the two stations. To do this, the earth plates must be buried deep enough to always be in contact with moist soil. In arid areas this can be problematic. Operators were sometimes instructed to pour water on the earth plates to maintain connection. [3] The plates must also be large enough to pass sufficient current. For the ground circuit to have a conductance as good as the conductor it replaces, the surface area of the plate is made larger than the cross-sectional area of the conductor by the same factor as the resistivity of the ground exceeds the resistivity of copper, or whatever other metal is being used for the wire. [4]

Reason for use

The advantage of the earth-return system is that it reduces the amount of metal wire that would otherwise be required, a substantial saving on long telegraph lines that may run for hundreds, or even thousands, of miles. [5] This advantage was not so apparent in early telegraph systems which often required multiple signal wires. All of the circuits in such a system could use the same single return conductor (unbalanced lines), so the cost saving would have been minimal. Examples of multiwire systems included Pavel Schilling's experimental system in 1832, which had six signal wires so that the Cyrillic alphabet could be binary coded, [6] and the Cooke and Wheatstone five-needle telegraph in 1837. The latter did not require a return conductor at all because the five signal wires were always used in pairs with opposite polarity currents until code points for numerals were added. [7]

The expense of multiwire systems rapidly led to single-signal-wire systems becoming the norm for long-distance telegraph. Around the time earth return was introduced, the two most widely used systems were the Morse system of Samuel Morse (from 1844) [8] and the Cooke and Wheatstone one-needle telegraph (from 1843). [9] A few two-signal-wire systems lingered on; the Cooke and Wheatstone two-needle system used on British railways, [10] and the Foy-Breguet telegraph used in France. [11] With the reduction in the number of signal wires, the cost of the return wire was much more significant, leading to earth return becoming the standard. [12]

Electromagnetic telegraphs wires over time
Telegraph systemNumber of wires required or proposed
Steinheil (1838) [13]
1
Cooke and Wheatstone (1837) [14]
5
Schilling (1832) [15]
8
Sömmerring (1809) [16]
35
Ritchie (1830) [17]
52
Ampère (1820) [18]
60

Sömmerring's telegraph was an electrochemical, rather than an electromagnetic telegraph and is placed out of chronological order. It is shown here for comparison because it directly inspired Schilling's electromagnetic telegraph, but Schilling used a greatly reduced number of wires. [19]

History

Early experiments

William Watson established the viability of earth return William Watson.jpg
William Watson established the viability of earth return

The first use of an earth return to complete an electric circuit was by William Watson in 1747 excluding experiments using a water return path. Watson, in a demonstration on Shooter's Hill, London, sent an electric current through 2,800 feet of iron wire, insulated with baked wood, with an earth-return path. Later that year he increased that distance to two miles. [20] One of the first demonstrations of a water-return path was by John Henry Winkler, [note 1] a professor in Leipzig, who used the River Pleisse in this way in an experiment on 28 July 1746. [21] The first experimenter to test an earth-return circuit with a low-voltage battery rather than a high-voltage friction machine was Basse of Hameln in 1803. [22] These early experiments were not aimed at producing a telegraph, but rather, were designed to determine the speed of electricity. In the event, the transmission of electrical signals proved to be faster than the experimenters were able to measure – indistinguishable from instantaneous. [23]

Watson's result seems to have been unknown, or forgotten, by early telegraph experimenters who used a return conductor to complete the circuit. [24] One early exception was a telegraph invented by Harrison Gray Dyar in 1826 using friction machines. Dyar demonstrated this telegraph around a race course on Long Island, New York, in 1828 using an earth-return circuit. The demonstration was an attempt to get backing for construction of a New York to Philadelphia line, but the project was unsuccessful (and is unlikely to have worked over a long distance), Dyar was quickly forgotten, and earth return had to be reinvented yet again. [25]

First earth-return telegraph

Carl August von Steinheil was the first to put an earth-return telegraph into service Carl August von Steinheil um 1857 (cropped).jpg
Carl August von Steinheil was the first to put an earth-return telegraph into service

The first telegraph put into service with an earth return is due to Carl August von Steinheil in 1838. [26] Steinheil's discovery was independent of earlier work and he is often, inaccurately, cited as the inventor of the principle. [27] Steinheil was working on providing a telegraph along the Nuremberg–Fürth railway line, a distance of five miles. Steinheil first attempted, at the suggestion of Carl Friedrich Gauss, to use the two rails of the track as the telegraph conductors. This failed because the rails were not well insulated from earth and there was consequently a conducting path between them. However, this initial failure made Steinheil realise that the earth could be used as a conductor and he then succeeded with only one wire and an earth return. [28]

Steinheil realised that the "galvanic excitation" in the earth was not confined to the direct route between the two ends of the telegraph wire, but extended outwards indefinitely. He speculated that this might mean that telegraphy without any wires at all was possible; he may have been the first to consider wireless telegraphy as a real possibility. He succeeded in transmitting a signal 50 feet by electromagnetic induction, but this distance was not of practical use. [29]

The use of earth-return circuits rapidly became the norm, helped along by Steinheil declining to patent the idea – he wished to make it freely available as a public service on his part. [30] However, Samuel Morse was not immediately aware of Steinheil's discovery when he installed the first telegraph line in the United States in 1844 using two copper wires. [31] Earth return became so ubiquitous that some telegraph engineers appear not to have realised that early telegraphs all used return wires. In 1856, a couple of decades after the introduction of earth return, Samuel Statham of the Gutta Percha Company and Wildman Whitehouse tried to patent a return wire and got as far as provisional protection. [32]

Problems with electric power

The introduction of electric power, especially electric tram lines in the 1880s, [33] seriously disturbed earth-return telegraph lines. The starting and stopping of the trams generated large electromagnetic spikes which overwhelmed code pulses on telegraph lines. That was particularly a problem on lines where high-speed automatic working was in use and, most especially, on submarine telegraph cables. The latter type could be thousands of miles long and the arriving signal was consequently small. [34] On land, repeaters in the line would be used to regenerate the signal, but they were not available for submarine cables until the middle of the 20th century. [35] Sensitive instruments like the syphon recorder were used to detect weak signals on long submarine cables, and they were easily disrupted by trams. [36]

The problem caused by electric trams was so severe in some places that it led to the reintroduction of return conductors. A return conductor following the same path as the main conductor will have the same interference induced in it. Such common-mode interference can be entirely removed if both parts of the circuit are identical (a balanced line). One such case of interference occurred in 1897 in Cape Town, South Africa. The disruption was so great that not only was the buried cable through the city replaced with a balanced line, but a balanced submarine cable was laid for five or six nautical miles out to sea, where it was spliced on to the original cable. [37]

The advent of telephony, which initially used the same earth-return lines used by telegraphy, made it essential to use balanced circuits, because telephone lines were even more susceptible to interference. One of the first to realise that all-metal circuits would solve the severe noise problems encountered on earth-return telephone circuits was John J. Carty, the future chief engineer of the American Telephone and Telegraph Company. Carty began installing metallic returns on lines under his control and reported that the noises immediately disappeared almost entirely. [38]

See also

Notes

  1. Full name found from Philosophical Transactions of the Royal Society of London, vol. 9 (1744–1749), p. 494.

Related Research Articles

<span class="mw-page-title-main">Electrical telegraph</span> Early system for transmitting text over wires

Electrical telegraphs were point-to-point text messaging systems, primarily used from the 1840s until the late 20th century. It was the first electrical telecommunications system and the most widely used of a number of early messaging systems called telegraphs, that were devised to communicate text messages more quickly than physical transportation. Electrical telegraphy can be considered to be the first example of electrical engineering.

<span class="mw-page-title-main">Telegraphy</span> Long distance transmission of text

Telegraphy is the long-distance transmission of messages where the sender uses symbolic codes, known to the recipient, rather than a physical exchange of an object bearing the message. Thus flag semaphore is a method of telegraphy, whereas pigeon post is not. Ancient signalling systems, although sometimes quite extensive and sophisticated as in China, were generally not capable of transmitting arbitrary text messages. Possible messages were fixed and predetermined and such systems are thus not true telegraphs.

<span class="mw-page-title-main">Wireless telegraphy</span> Method of communication

Wireless telegraphy or radiotelegraphy is transmission of text messages by radio waves, analogous to electrical telegraphy using cables. Before about 1910, the term wireless telegraphy was also used for other experimental technologies for transmitting telegraph signals without wires. In radiotelegraphy, information is transmitted by pulses of radio waves of two different lengths called "dots" and "dashes", which spell out text messages, usually in Morse code. In a manual system, the sending operator taps on a switch called a telegraph key which turns the transmitter on and off, producing the pulses of radio waves. At the receiver the pulses are audible in the receiver's speaker as beeps, which are translated back to text by an operator who knows Morse code.

In telecommunications and professional audio, a balanced line or balanced signal pair is an electrical circuit consisting of two conductors of the same type, both of which have equal impedances along their lengths, to ground, and to other circuits. The primary advantage of the balanced line format is good rejection of common-mode noise and interference when fed to a differential device such as a transformer or differential amplifier.

<span class="mw-page-title-main">Ground (electricity)</span> Reference point in an electrical circuit from which voltages are measured

In electrical engineering, ground or earth may be a reference point in an electrical circuit from which voltages are measured, a common return path for electric current, or a direct physical connection to the Earth.

Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around 20 kHz to around 300 GHz. This is roughly between the upper limit of audio frequencies and the lower limit of infrared frequencies, and also encompasses the microwave range, though other definitions treat microwaves as a separate band from RF. These are the frequencies at which energy from an oscillating current can radiate off a conductor into space as radio waves, so they are used in radio technology, among other uses. Different sources specify different upper and lower bounds for the frequency range.

<span class="mw-page-title-main">Charles Wheatstone</span> British scientist and inventor

Sir Charles Wheatstone FRS FRSE, was an English scientist and inventor of many scientific breakthroughs of the Victorian era, including the English concertina, the stereoscope, and the Playfair cipher. However, Wheatstone is best known for his contributions in the development of the Wheatstone bridge, originally invented by Samuel Hunter Christie, which is used to measure an unknown electrical resistance, and as a major figure in the development of telegraphy.

<span class="mw-page-title-main">Twisted pair</span> Type of wiring used for communications

Twisted pair cabling is a type of communications cable in which two conductors of a single circuit are twisted together for the purposes of improving electromagnetic compatibility. Compared to a single conductor or an untwisted balanced pair, a twisted pair reduces electromagnetic radiation from the pair and crosstalk between neighbouring pairs and improves rejection of external electromagnetic interference. It was invented by Alexander Graham Bell.

<span class="mw-page-title-main">Overhead line</span> Cable that provides power to electric railways, trams, and trolleybuses

An overhead line or overhead wire is an electrical cable that is used to transmit electrical energy to electric locomotives, electric multiple units, trolleybuses or trams. The generic term used by the International Union of Railways for the technology is overhead line. It is known variously as overhead catenary, overhead contact line (OCL), overhead contact system (OCS), overhead equipment (OHE), overhead line equipment, overhead lines (OHL), overhead wiring (OHW), traction wire, and trolley wire.

An earth battery is a pair of electrodes made of two dissimilar metals, such as iron and copper, which are buried in the soil or immersed in the sea. Earth batteries act as water-activated batteries. If the plates are sufficiently far apart, they can tap telluric currents. Earth batteries are sometimes referred to as telluric power sources and telluric generators.

<span class="mw-page-title-main">Shielded cable</span> Electric cable with metal jacket (shield) to prevent magnetic interference

A shielded cable or screened cable is an electrical cable that has a common conductive layer around its conductors for electromagnetic shielding. This shield is usually covered by an outermost layer of the cable. Common types of cable shielding can most broadly be categorized as foil type, contraspiralling wire strands or both. A longitudinal wire may be necessary with dielectric spiral foils to short out each turn.

<span class="mw-page-title-main">Pavel Schilling</span> Russian military officer and diplomat

Baron Pavel Lvovitch Schilling (1786–1837), also known as Paul Schilling, was a Russian military officer and diplomat of Baltic German origin. The majority of his career was spent working for the imperial Russian Ministry of Foreign Affairs as a language officer at the Russian embassy in Munich. As a military officer, he took part in the War of the Sixth Coalition against Napoleon. In his later career, he was transferred to the Asian department of the ministry and undertook a tour of Mongolia to collect ancient manuscripts.

<span class="mw-page-title-main">Unbalanced line</span>

In telecommunications and electrical engineering in general, an unbalanced line is a pair of conductors intended to carry electrical signals, which have unequal impedances along their lengths and to ground and other circuits. Examples of unbalanced lines are coaxial cable or the historic earth return system invented for the telegraph, but rarely used today. Unbalanced lines are to be contrasted with balanced lines, such as twin-lead or twisted pair which use two identical conductors to maintain impedance balance throughout the line. Balanced and unbalanced lines can be interfaced using a device called a balun.

<span class="mw-page-title-main">Invention of radio</span>

The invention of radio communication was preceded by many decades of establishing theoretical underpinnings, discovery and experimental investigation of radio waves, and engineering and technical developments related to their transmission and detection. These developments allowed Guglielmo Marconi to turn radio waves into a wireless communication system.

<span class="mw-page-title-main">Cooke and Wheatstone telegraph</span> Early electrical telegraph system dating from the 1830s

The Cooke and Wheatstone telegraph was an early electrical telegraph system dating from the 1830s invented by English inventor William Fothergill Cooke and English scientist Charles Wheatstone. It was a form of needle telegraph, and the first telegraph system to be put into commercial service. The receiver consisted of a number of needles that could be moved by electromagnetic coils to point to letters on a board. This feature was liked by early users who were unwilling to learn codes, and employers who did not want to invest in staff training.

<span class="mw-page-title-main">Needle telegraph</span> Type of electrical telegraph

A needle telegraph is an electrical telegraph that uses indicating needles moved electromagnetically as its means of displaying messages. It is one of the two main types of electromagnetic telegraph, the other being the armature system, as exemplified by the telegraph of Samuel Morse in the United States. Needle telegraphs were widely used in Europe and the British Empire during the nineteenth century.

<span class="mw-page-title-main">British and Irish Magnetic Telegraph Company</span>

The British and Irish Magnetic Telegraph Company was founded by John Brett in 1850. The Magnetic was the principal competitor to the largest telegraph company in the United Kingdom, the Electric Telegraph Company. The Magnetic was the leading company in Ireland, while the Electric was the leading company in mainland Britain. Between them, they dominated the market until the telegraph was nationalised in 1870.

<span class="mw-page-title-main">Foy–Breguet telegraph</span> Type of electrical telegraph

The Foy–Breguet telegraph, also called the French telegraph, was an electrical telegraph of the needle telegraph type developed by Louis-François-Clement Breguet and Alphonse Foy in the 1840s for use in France. The system used two-needle instruments that presented a display using the same code as that on the optical telegraph of Claude Chappe. The Chappe telegraph was extensively used in France by the government, so this arrangement was appealing to them as it meant there was no need to retrain operators.

<span class="mw-page-title-main">Electrical telegraphy in the United Kingdom</span> History of electrical telegraphy in the United Kingdom

In the nineteenth century, the United Kingdom of Great Britain and Ireland had the world's first commercial telegraph company. British telegraphy dominated international telecommunications well into the twentieth. Telegraphy is the sending of textual messages by human operators using symbolic codes. Electrical telegraphy used conducting wires to send messages, often incorporating a telegram service to deliver the telegraphed communication from the telegraph office. This is distinct from optical telegraphy that preceded it and the radiotelegraphy that followed. Though Francis Ronalds first demonstrated a working telegraph over a substantial distance in 1816, he was unable to put it into practical use. Starting in 1836, William Fothergill Cooke, with the scientific assistance of Charles Wheatstone, developed the Cooke and Wheatstone telegraph. The needle telegraph instrument suggested by Wheatstone, the battery invented by John Frederic Daniell, and the relay invented by Edward Davy were important components of this system.

<span class="mw-page-title-main">Schilling telegraph</span>

The Schilling telegraph is a needle telegraph invented by Pavel Schilling in the nineteenth century. It consists of a bank of needle instruments which between them display a binary code representing a letter or numeral. Signals were sent from a piano-like keyboard, and an additional circuit was provided for calling attention at the receiving end by setting off an alarm.

References

    • Schwendler, pp. 203–206
    • Brooks, pp. 117–120
  1. Wheen, p. 22
  2. Darling, p. 378
  3. Fahie, pp. 346–347, citing Steinheil
    • Schwender, p. 204
    • Kahn, p. 70
    • Huurdeman, p. 54
    • Shiers, p. 286
  4. Hubbard, p. 63
  5. Huurdeman, p. 141
  6. Huurdeman, p. 69
  7. Hubbard, p. 78
  8. Holzmann & Pehrson, pp. 93–94
  9. Kahn, p. 70
  10. Fahie, pp. 344–345
  11. Burns, pp. 128–129
  12. Artemenko
  13. Fahie, pp. 230–231
  14. Fahie, pp. 303–305
  15. Fahie, p. 275
  16. Huurdeman, p. 54
  17. Hawks, p. 421
  18. Hawks, p. 343
  19. Schwendler, p. 204
  20. Hawks, p. 343
  21. Calvert
  22. Fleming, p. 511
    • For example,
    • Stachurski, p. 80
    • Wheen, p. 22
    • Hawks, p. 421
    • King, p. 284
    • Calvert
    • Fahie, pp. 4–5
    • Fleming, p. 511
    • Stachurski, p. 80
    • Calvert
  23. Prescott, p. 272
  24. Bright in Trotter, p. 516
  25. Margalit, p. 69
  26. Bright, in Trotter, p. 517
  27. Huurdeman, p. 327
  28. Trotter, pp. 501–502
  29. Trotter, pp. 510–512
    • Hendrick, p. 102
    • Kahn, pp. 70–71

Bibliography