Ectomesenchymoma

Last updated

Ectomesenchymoma is a rare, fast-growing tumor of the nervous system or soft tissue that occurs mainly in children, although cases have been reported in patients up to age 60. [1] Ectomesenchymomas may form in the head and neck, abdomen, perineum, scrotum, or limbs. Also called malignant ectomesenchymoma.

Contents

Malignant ectomesenchymoma (MEM) is a rare tumor of soft tissues or the CNS, which is composed of both neuroectodermal elements [represented by ganglion cells and/or well-differentiated or poorly differentiated neuroblastic cells such as ganglioneuroma, ganglioneuroblastoma, neuroblastoma, peripheral primitive neuroectodermal tumors – PNET] and one or more mesenchymal neoplastic elements, usually rhabdomyosarcoma . The most accepted theory suggests that this tumor arises from remnants of migratory neural crest cells and thus from the ectomesenchyme. [2]

Clinical picture

The tumor largely affects children under 15 years of age and about 20% only are found in adults with nearly 60% involving males and 40% females (1). The most frequent locations are head and neck (orbit and nasopharynx), central nervous system, abdomen and retroperitoneum, pelvis, perineum, scrotum and prostate(1). Clinical symptoms are not specific and usually caused by local tumor compression and infiltration.

Histopathology

The main features of this tumor is to comprise either ectodermal derivatives (neuroblasts and ganglion cells) or mesenchymal components mostly represented by plump, elongated cells in interlacing bundles often showing rhabdomyoblastic differentiation, including strap-like and racket-shaped cells (2-6). A myofibril-like structure and cross striations can be identified. Liposarcoma-like and chondroid foci can be an additional finding. Fibrosarcoma-like and fibrous histiocytoma-like areas can be observed as well as neurofibromatous and neuroblastic components with rosette formation. Ganglion cells can appear immature and atypical, they can be bi- or multinucleated and showing evidence of Nissl substance (2-6). Rhabdomyoblasts and poorly differentiated small cells display positivity for desmin and myosin while neural areas are variably sensitive to S-100. Ganglion cells are strongly positive for NSE. It is important to point out that the ectodermal component may be sometimes scanty and can be overlooked whereas in specimens after chemotherapy the ganglioneuroma component is increased and even overwhelming. Differential diagnosis should consider rhabdomyosarcoma, Triton tumor, teratoma, Wilms tumor and benign, mature ectomesenchymoma (ectomesenchymal hamartoma).

Research

Goldsby et al. reported an ectomesenchymoma of the kidney showing hyperdiploid count and a translocation between chromosomes 12 and 15 (8). Floris et al. found in their reported case hyperploidism in a subset of cells as well as gains of chromosomes 2, 11 and 20, a finding in common with alveolar rhabdomyosarcoma. They found as well 2 distinctive chromosome 6p21.32-p21.2 and 6p11.2 amplification regions in the primary tumor which disappeared in the postchemotherapy specimen. Furthermore, the pretreatment biopsy showed strong expression of HMGA1 and HMGA2 proteins by immunohistochemistry and loss of expression after therapy thereby crediting the HMGA family of proteins for oncogenic expansion (9).

Historic background

MEM comprises a heterogeneous group of neoplasms believed to originate from the neural crest. First hints to this type of tumor were probably from Shuangshoti and Nestky (1971) and from Holimon and Rosenblum (1971) (2-3). Additional contributions were provided thereafter by Naka et al. (1975), Karcioglu et al. (1977), Cozzutto et al. (1982) and Kawamoto et al. (1987). Kosem et al. collected 44 cases of MEM in a 2004 review and examined management data finding out that resection with pre- or post-surgery chemotherapy yielded the best results with one death only in 13. In the five cases reported by Mouton et al. an aggressive chemotherapy and adequate surgical excision granted a disease-free interval for 7 to 50 months. The attainability of radical surgical ablation seems the most important prognostic factor (10).

Related Research Articles

Sarcoma Medical condition

A sarcoma is a malignant tumor, a type of cancer that arises from transformed cells of mesenchymal origin. Connective tissue is a broad term that includes bone, cartilage, fat, vascular, or hematopoietic tissues, and sarcomas can arise in any of these types of tissues. As a result, there are many subtypes of sarcoma, which are classified based on the specific tissue and type of cell from which the tumor originates. Sarcomas are primary connective tissue tumors, meaning that they arise in connective tissues. This is in contrast to secondary connective tissue tumors, which occur when a cancer from elsewhere in the body spreads to the connective tissue. The word sarcoma is derived from the Greek σάρκωμα sarkōma "fleshy excrescence or substance", itself from σάρξsarx meaning "flesh".

Fibrosarcoma Medical condition

Fibrosarcoma is a malignant mesenchymal tumour derived from fibrous connective tissue and characterized by the presence of immature proliferating fibroblasts or undifferentiated anaplastic spindle cells in a storiform pattern. Fibrosarcomas mainly arise in people between the ages of 25–79 It originates in fibrous tissues of the bone and invades long or flat bones such as the femur, tibia, and mandible. It also involves the periosteum and overlying muscle.

Desmoplastic small-round-cell tumor Aggressive and rare cancer

Desmoplastic small-round-cell tumor (DSRCT) is an aggressive and rare cancer that primarily occurs as masses in the abdomen. Other areas affected may include the lymph nodes, the lining of the abdomen, diaphragm, spleen, liver, chest wall, skull, spinal cord, large intestine, small intestine, bladder, brain, lungs, testicles, ovaries, and the pelvis. Reported sites of metastatic spread include the liver, lungs, lymph nodes, brain, skull, and bones. It is characterized by the EWS-WT1 fusion protein.

Primitive neuroectodermal tumor Medical condition

Primitive neuroectodermal tumor is a malignant (cancerous) neural crest tumor. It is a rare tumor, usually occurring in children and young adults under 25 years of age. The overall 5 year survival rate is about 53%.

Atypical teratoid rhabdoid tumor Medical condition

An atypical teratoid rhabdoid tumor (AT/RT) is a rare tumor usually diagnosed in childhood. Although usually a brain tumor, AT/RT can occur anywhere in the central nervous system (CNS), including the spinal cord. About 60% will be in the posterior cranial fossa. One review estimated 52% in the posterior fossa, 39% are supratentorial primitive neuroectodermal tumors (sPNET), 5% are in the pineal, 2% are spinal, and 2% are multifocal.

Fibroblast growth factor receptor 1 Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor 1 (FGFR1), also known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2 / Pfeiffer syndrome, and CD331, is a receptor tyrosine kinase whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome, and clonal eosinophilias.

Alveolar rhabdomyosarcoma (ARMS) is a subtype of the rhabdomyosarcoma soft tissue cancer family whose lineage is from mesenchymal cells and are related to skeletal muscle cells. ARMS tumors resemble the alveolar tissue in the lungs. Tumor location varies from patient to patient, but is commonly found in the head and neck region, male and female urogenital tracts, the torso, and extremities. Two fusion proteins can be associated with ARMS, but are not necessary, PAX3-FKHR. and PAX7-FKHR. In children and adolescents ARMS accounts for about 1 percent of all malignancies, has an incidence rate of 1 per million, and most cases occur sporadically with no genetic predisposition. PAX3-FOXO1 is now known to drive cancer-promoting gene expression programs through creation of distant genetic elements called super enhancers.

HMGA2 Protein-coding gene in the species Homo sapiens

High-mobility group AT-hook 2, also known as HMGA2, is a protein that, in humans, is encoded by the HMGA2 gene.

Malignant ectomesenchymoma(MEM) is a rare, fast-growing tumor of the nervous system or soft tissue that occurs in children and young adults. MEM is part of a group of small round blue cell tumors which includes neuroblastoma, rhabdomyosarcoma, non-Hodgkin's lymphoma, and the Ewing's family of tumors.

Gliosarcoma Medical condition

Gliosarcoma is a rare type of glioma, a cancer of the brain that comes from glial, or supportive, brain cells, as opposed to the neural brain cells. Gliosarcoma is a malignant cancer, and is defined as a glioblastoma consisting of gliomatous and sarcomatous components. Primary gliosarcoma (PGS) is classified as a grade IV tumor and a subtype of glioblastoma multiforme in the 2007 World Health Organization classification system (GBM). Because of a lack of specific and clear diagnostic criteria, the word "gliosarcoma" was frequently used to refer to glial tumours with mesenchymal properties, such as the ability to make collagen and reticulin.

Immature teratoma Medical condition

An immature teratoma is a teratoma that contains anaplastic immature elements, and is often synonymous with malignant teratoma. A teratoma is a tumor of germ cell origin, containing tissues from more than one germ cell line, It can be ovarian or testicular in its origin. and are almost always benign. An immature teratoma is thus a very rare tumor, representing 1% of all teratomas, 1% of all ovarian cancers, and 35.6% of malignant ovarian germ cell tumors. It displays a specific age of incidence, occurring most frequently in the first two decades of life and almost never after menopause. Unlike a mature cystic teratoma, an immature teratoma contains immature or embryonic structures. It can coexist with mature cystic teratomas and can constitute of a combination of both adult and embryonic tissue. The most common symptoms noted are abdominal distension and masses. Prognosis and treatment options vary and largely depend on grade, stage and karyotype of the tumor itself.

Aggressive angiomyxoma Medical condition

Angiomyxoma is a myxoid tumor involving the blood vessels.

Ganglioneuroblastoma Medical condition

Ganglioneuroblastoma is a variant of neuroblastoma that is surrounded by ganglion cells.

Juxtaglomerular cell tumor is an extremely rare kidney tumour of the juxtaglomerular cells, with less than 100 cases reported in literature. This tumor typically secretes renin, hence the former name of reninoma. It often causes severe hypertension that is difficult to control, in adults and children, although among causes of secondary hypertension it is rare. It develops most commonly in young adults, but can be diagnosed much later in life. It is generally considered benign, but its malignant potential is uncertain.

Medulloepithelioma Medical condition

Medulloepithelioma is a rare, primitive, fast-growing brain tumour thought to stem from cells of the embryonic medullary cavity. Tumours originating in the ciliary body of the eye are referred to as embryonal medulloepitheliomas, or diktyomas.

Embryonal rhabdomyosarcoma (EMRS) is a rare histological form of cancer in the connective tissue wherein the mesenchymally-derived malignant cells resemble the primitive developing skeletal muscle of the embryo. It is the most common soft tissue sarcoma occurring in children. Embryonal rhabdomyosarcoma is also known as PAX-fusion negative or Fusion-Negative rhabdomyosarcoma, as tumors of this subtype are unified by their lack of a PAX3-FOXO1 fusion oncogene. Fusion status refers to the presence or absence of a fusion gene, which is a gene formed from joining two different genes together through DNA rearrangements. These types of tumors are classified as embryonal rhabdomyosarcoma "because of their remarkable resemblance to developing embryonic and fetal skeletal muscle."

Pleomorphic anaplastic neuroblastoma (PAN) is a striking aspect of neuroblastoma first described by Cozzutto and Carbone in 1988. Another case was thereafter reported by Cowan, et al. with cytogenetic and immunohistological analysis in a 28-year-old man. The case described by Navarro, et al. showed MYCN amplification and a 1p36 deletion as measured with FISH in 13% of cells. Additionally there was a main cell population with a DNA index of 2 indicating a tetraploid DNA content and a high expression of MIBI (Ki-67), bel 2, p53, and P-glycoprotein, either correlated with rapid progression of disease.

A rhabdomyoblast is a cell type which is found in some rhabdomyosarcomas. When found histologically, a rhabdomyoblast aids the diagnosis of embryonal, alveolar, spindle cell/sclerosing, and pleomorphic rhabdomyosarcomas; however, in a tumor, expression of the rhabdomyoblast phenotype is not the only factor in diagnosing a rhabdomyosarcoma. Mesenchymal malignancies can exhibit this phenotype as well. Immunohistochemistry techniques allow for the sensitive detection of desmin, vimentin, muscle specific actin, and MyoD1. Similarly the rhabdomyoblast phenotype can be detected morphologically. Rhabdomyoblasts are early stage mesenchymal cells, having the potential to differentiate into a wide range of skeletal cells. Each stage of differentiation exhibits unique and distinguishable histological characteristics. In its initial from, stellate cells with amphiphilic cytoplasm and ovular central nuclei are observed. Commonly referred to as rhabdoid features, the maturing rhabdomyoblast will likely exhibit low levels of eosinophilic cytoplasm in proximal distances to the nucleus. As maturation and differentiation progress, the cell's cytoplasmic levels of white blood cells increase; additionally, elongated shapes, commonly depicted as “tadpole”, “strap” and "spider cells", are observed. In the concluding phase of differentiation, the white blood cell rich cytoplasm appears bright and exhibits cross-striation. The highly regulated organization of actin and myosin microfilaments in contractile proteins results in this appearance.

Rhabdomyoma is a benign mesenchymal tumor of skeletal muscle, separated into two major categories based on site: Cardiac and extracardiac. They are further separated by histology: fetal, juvenile (intermediate), and adult types. Genital types are recognized, but are often part of either the fetal or juvenile types. The fetal type is thought to recapitulate immature skeletal muscle at about week six to ten of gestational development.

Central nervous system primitive neuroectodermal tumor Medical condition

A central nervous system primitive neuroectodermal tumor, often abbreviated as PNET, supratentorial PNET, or CNS-PNET, is one of the 3 types of embryonal central nervous system tumors defined by the World Health Organization. It is considered an embryonal tumor because it arises from cells partially differentiated or still undifferentiated from birth. Those cells are usually neuroepithelial cells, stem cells destined to turn into glia or neurons. It can occur anywhere within the spinal cord and cerebrum and can have multiple sites of origins, with a high probability of metastasis through cerebrospinal fluid (CSF).

References

1. Kösen M, Ibiloglu I, Bakan V, Köseloglu B (2004) Ectomesenchymoma: Case report and review of the literature. Turk J Pediat 46:82-87.

2. Shuangshoti S, Nestky MG (1971) Neoplasms of mixed mesenchymal and neuroepithelial origin. J Neuropathol Exp Neurol 30:290-309.

3. Holimon JL, Rosenblum WI (1971) "Gangliorhabdomyosarcoma": a tumor of ectomesenchyme. J Neurosurg 34:417-422.

4. Naka M, Matsumoto S, Shirai T, Itoh T (1975) Ganglioneuroblastoma associated with malignant mesenchymoma. Cancer 36:1050-1056.

5. Karcioglu Z, Semeren A, Mathes SJ (1977) Ectomesenchymoma. A malignant tumor of migratory neural crest (ectomesenchyme) remnants showing ganglionic, schwannian, melanocytic and rhabdomyoblastic differentiation. Cancer 39:2486-2496.

6. Cozzutto C, Comelli A, Bandelloni R (1982) Ectomesenchymoma. Report of two cases. Virchows Arch A Pathol Anat Histopathol 398:185-195.

7. Kawamoto EH, Weidner N, Agostini RM jr, Jaffe R (1987) Malignant ectomesenchymoma of soft tissue. Report of two cases and review of the literature. Cancer 59:1791-1802. 8. Goldsby RE, Bruggers CS, Brothman AR, Sorensen PH, Beckwith JB, Pysher TJ (1998) Spindle cell sarcoma of the kidney with ganglionic elements (Malignant ectomesenchymoma) associated with chromosomal abnormalities and a review of the literature. J Pediat Hematol Oncol 20(2):160-164.

9. Floris G, Debiec-Rychter M, Wozniak KA, Magrini S, Maffioletti G, De Wever I, Tellini G, Sciot R (2007) Malignant ectomesenchymoma: genetic profile reflects rhabdomyosarcomatous differentiation. Diagn Mol Pathol 16(4):243-248.

10. Mouton SC, Rosenberg HS, Cohen MC, Drut R, Emms M, Kaschula RO (1996) Malignant ectomesenchymoma in childhood. Pediat Pathol Lab Med 16(4):607-624.

  1. "The Turkish Journal of Pediatrics". Archived from the original on 2007-07-13. Retrieved 2008-11-22.
  2. Freitas, Alexandre Bruno Raul; Aguiar, Paulo Henrique; Miura, Flávio Kei; Yasuda, Alexandre; Soglia, Jean; Soglia, Fernanda; Aguiar, Claudia H.; Vinko, Filadelfo; Silva, Najla Saba (1999). "Malignant Ectomesenchymoma". Pediatric Neurosurgery. 30 (6): 320–330. doi:10.1159/000028818. PMID   10494059. S2CID   202655606.

PD-icon.svg This article incorporates  public domain material from the U.S. National Cancer Institute document: "Dictionary of Cancer Terms".