Edge dominating set

Last updated • 2 min readFrom Wikipedia, The Free Encyclopedia
Examples of edge dominating sets. Edge-dominating-set.svg
Examples of edge dominating sets.

In graph theory, an edge dominating set for a graph G = (V, E) is a subset D  E such that every edge not in D is adjacent to at least one edge in D. An edge dominating set is also known as a line dominating set. Figures (a)–(d) are examples of edge dominating sets (thick red lines).

Contents

A minimum edge dominating set is a smallest edge dominating set. Figures (a) and (b) are examples of minimum edge dominating sets (it can be checked that there is no edge dominating set of size 2 for this graph).

Properties

An edge dominating set for G is a dominating set for its line graph L(G) and vice versa.

Any maximal matching is always an edge dominating set. Figures (b) and (d) are examples of maximal matchings.

Furthermore, the size of a minimum edge dominating set equals the size of a minimum maximal matching. A minimum maximal matching is a minimum edge dominating set; Figure (b) is an example of a minimum maximal matching. A minimum edge dominating set is not necessarily a minimum maximal matching, as illustrated in Figure (a); however, given a minimum edge dominating set D, it is easy to find a minimum maximal matching with |D| edges (see, e.g., Yannakakis & Gavril 1980).

Algorithms and computational complexity

Determining whether there is an edge dominating set of a given size for a given graph is an NP-complete problem (and therefore finding a minimum edge dominating set is an NP-hard problem). Yannakakis & Gavril (1980) show that the problem is NP-complete even in the case of a bipartite graph with maximum degree 3, and also in the case of a planar graph with maximum degree 3.

There is a simple polynomial-time approximation algorithm with approximation factor 2: find any maximal matching. A maximal matching is an edge dominating set; furthermore, a maximal matching M can be at worst 2 times as large as a smallest maximal matching, and a smallest maximal matching has the same size as the smallest edge dominating set.

Also the edge-weighted version of the problem can be approximated within factor 2, but the algorithm is considerably more complicated (Fujito & Nagamochi 2002; Parekh 2002).

Chlebík & Chlebíková (2006) show that finding a better than (7/6)-approximation is NP-hard. Schmied & Viehmann proved that the Problem is UGC-hard to approximate to within any constant better than 3/2.

Related Research Articles

<span class="mw-page-title-main">Clique problem</span> Task of computing complete subgraphs

In computer science, the clique problem is the computational problem of finding cliques in a graph. It has several different formulations depending on which cliques, and what information about the cliques, should be found. Common formulations of the clique problem include finding a maximum clique, finding a maximum weight clique in a weighted graph, listing all maximal cliques, and solving the decision problem of testing whether a graph contains a clique larger than a given size.

<span class="mw-page-title-main">Combinatorial optimization</span> Subfield of mathematical optimization

Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead.

<span class="mw-page-title-main">Steiner tree problem</span> On short connecting networks with added vertices

In combinatorial mathematics, the Steiner tree problem, or minimum Steiner tree problem, named after Jakob Steiner, is an umbrella term for a class of problems in combinatorial optimization. While Steiner tree problems may be formulated in a number of settings, they all require an optimal interconnect for a given set of objects and a predefined objective function. One well-known variant, which is often used synonymously with the term Steiner tree problem, is the Steiner tree problem in graphs. Given an undirected graph with non-negative edge weights and a subset of vertices, usually referred to as terminals, the Steiner tree problem in graphs requires a tree of minimum weight that contains all terminals. Further well-known variants are the Euclidean Steiner tree problem and the rectilinear minimum Steiner tree problem.

<span class="mw-page-title-main">Independent set (graph theory)</span> Unrelated vertices in graphs

In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set of vertices such that for every two vertices in , there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in . A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening.

<span class="mw-page-title-main">Vertex cover</span> Subset of a graphs vertices, including at least one endpoint of every edge

In graph theory, a vertex cover of a graph is a set of vertices that includes at least one endpoint of every edge of the graph.

In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there are also many approximation algorithms that provide an additive guarantee on the quality of the returned solution. A notable example of an approximation algorithm that provides both is the classic approximation algorithm of Lenstra, Shmoys and Tardos for scheduling on unrelated parallel machines.

In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. Finding a matching in a bipartite graph can be treated as a network flow problem.

<span class="mw-page-title-main">Complete coloring</span> Vertex coloring where every color pairing appears at least once

In graph theory, a complete coloring is a vertex coloring in which every pair of colors appears on at least one pair of adjacent vertices. Equivalently, a complete coloring is minimal in the sense that it cannot be transformed into a proper coloring with fewer colors by merging pairs of color classes. The achromatic numberψ(G) of a graph G is the maximum number of colors possible in any complete coloring of G.

<span class="mw-page-title-main">Cubic graph</span> Graph with all vertices of degree 3

In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs.

<span class="mw-page-title-main">Dominating set</span> Subset of a graphs nodes such that all other nodes link to at least one

In graph theory, a dominating set for a graph G is a subset D of its vertices, such that any vertex of G is either in D, or has a neighbor in D. The domination numberγ(G) is the number of vertices in a smallest dominating set for G.

In graph theory, a domatic partition of a graph is a partition of into disjoint sets , ,..., such that each Vi is a dominating set for G. The figure on the right shows a domatic partition of a graph; here the dominating set consists of the yellow vertices, consists of the green vertices, and consists of the blue vertices.

In the mathematical discipline of graph theory, a feedback vertex set (FVS) of a graph is a set of vertices whose removal leaves a graph without cycles. Equivalently, each FVS contains at least one vertex of any cycle in the graph. The feedback vertex set number of a graph is the size of a smallest feedback vertex set. The minimum feedback vertex set problem is an NP-complete problem; it was among the first problems shown to be NP-complete. It has wide applications in operating systems, database systems, and VLSI chip design.

Set packing is a classical NP-complete problem in computational complexity theory and combinatorics, and was one of Karp's 21 NP-complete problems. Suppose one has a finite set S and a list of subsets of S. Then, the set packing problem asks if some k subsets in the list are pairwise disjoint.

In computational complexity theory, the class APX is the set of NP optimization problems that allow polynomial-time approximation algorithms with approximation ratio bounded by a constant. In simple terms, problems in this class have efficient algorithms that can find an answer within some fixed multiplicative factor of the optimal answer.

<span class="mw-page-title-main">Boxicity</span> Smallest dimension where a graph can be represented as an intersection graph of boxes

In graph theory, boxicity is a graph invariant, introduced by Fred S. Roberts in 1969.

<span class="mw-page-title-main">Maximum cut</span> Problem of finding a maximum cut in a graph

For a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem.

<span class="mw-page-title-main">3-dimensional matching</span>

In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices.

In graph theory, the metric k-center or metric facility location problem is a combinatorial optimization problem studied in theoretical computer science. Given n cities with specified distances, one wants to build k warehouses in different cities and minimize the maximum distance of a city to a warehouse. In graph theory, this means finding a set of k vertices for which the largest distance of any point to its closest vertex in the k-set is minimum. The vertices must be in a metric space, providing a complete graph that satisfies the triangle inequality.

In geometry, a covering of a polygon is a set of primitive units whose union equals the polygon. A polygon covering problem is a problem of finding a covering with a smallest number of units for a given polygon. This is an important class of problems in computational geometry. There are many different polygon covering problems, depending on the type of polygon being covered. An example polygon covering problem is: given a rectilinear polygon, find a smallest set of squares whose union equals the polygon.

References

Minimum edge dominating set (optimisation version) is the problem GT3 in Appendix B (page 370).
Minimum maximal matching (optimisation version) is the problem GT10 in Appendix B (page 374).
Edge dominating set (decision version) is discussed under the dominating set problem, which is the problem GT2 in Appendix A1.1.
Minimum maximal matching (decision version) is the problem GT10 in Appendix A1.1.
Minimum Edge Dominating Set,
Minimum Maximal Matching.