Effective data transfer rate

Last updated

In telecommunication, effective data transfer rate is the average number of units of data, such as bits, characters, blocks, or frames, transferred per unit time from a source and accepted as valid by a sink.

Note: The effective data transfer rate is usually expressed in bits, characters, blocks, or frames per second. The effective data transfer rate may be averaged over a period of seconds, minutes, or hours.

Related Research Articles

Disk storage

Disk storage is a general category of storage mechanisms where data is recorded by various electronic, magnetic, optical, or mechanical changes to a surface layer of one or more rotating disks. A disk drive is a device implementing such a storage mechanism. Notable types are the hard disk drive (HDD) containing a non-removable disk, the floppy disk drive (FDD) and its removable floppy disk, and various optical disc drives (ODD) and associated optical disc media.

Digital video is an electronic representation of moving visual images (video) in the form of encoded digital data. This is in contrast to analog video, which represents moving visual images with analog signals. Digital video comprises a series of digital images displayed in rapid succession.

Enhanced Data Rates for GSM Evolution

EnhancedData rates for GSM Evolution (EDGE) is a digital mobile phone technology that allows improved data transmission rates as a backward-compatible extension of GSM. EDGE is considered a pre-3G radio technology and is part of ITU's 3G definition. EDGE was deployed on GSM networks beginning in 2003 – initially by Cingular in the United States.

In general terms, throughput is the rate of production or the rate at which something is processed.

Frame Relay Wide area network technology

Frame Relay is a standardized wide area network technology that specifies the physical and data link layers of digital telecommunications channels using a packet switching methodology. Originally designed for transport across Integrated Services Digital Network (ISDN) infrastructure, it may be used today in the context of many other network interfaces.

In digital transmission, the number of bit errors is the number of received bits of a data stream over a communication channel that have been altered due to noise, interference, distortion or bit synchronization errors.

In telecommunications, effective transmission rate is the rate at which information is processed by a transmission facility.

Time-division multiplexing multiplexing technique for digital signals

Time-division multiplexing (TDM) is a method of transmitting and receiving independent signals over a common signal path by means of synchronized switches at each end of the transmission line so that each signal appears on the line only a fraction of time in an alternating pattern. This method transmits two or more digital signals or analog signals over a common channel. It can be used when the bit rate of the transmission medium exceeds that of the signal to be transmitted. This form of signal multiplexing was developed in telecommunications for telegraphy systems in the late 19th century, but found its most common application in digital telephony in the second half of the 20th century.

The E-carrier is a member of the series of carrier systems developed for digital transmission of many simultaneous telephone calls by time-division multiplexing. The European Conference of Postal and Telecommunications Administrations (CEPT) originally standardized the E-carrier system, which revised and improved the earlier American T-carrier technology, and this has now been adopted by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). It was widely adopted in almost all countries outside the US, Canada, and Japan. E-carrier deployments have steadily been replaced by Ethernet as telecommunication networks transitions towards all IP.

The Honeywell 6000 series computers were rebadged versions of General Electric's 600-series mainframes manufactured by Honeywell International, Inc. from 1970 to 1989. Honeywell acquired the line when it purchased GE's computer division in 1970 and continued to develop them under a variety of names for many years.

AES3 is a standard for the exchange of digital audio signals between professional audio devices. An AES3 signal can carry two channels of PCM audio over several transmission media including balanced lines, unbalanced lines, and optical fiber.

FASTRAND was a magnetic drum mass storage system built by Sperry Rand Corporation for their UNIVAC 1100 series and 418/490/494 series computers. A FASTRAND subsystem consisted of one or two Control Units and up to eight FASTRAND units. A dual-access FASTRAND subsystem included two complete control units, and provided parallel data paths that allowed simultaneous operations on any two FASTRAND units in the subsystem. Each control unit interfaced to one 1100 Series (36-bit), or 490 Series (30-bit), parallel I/O channels.

In telecommunications and computing, bit rate is the number of bits that are conveyed or processed per unit of time.

In computer technology, transfers per second and its more common secondary terms gigatransfers per second (abbreviated as GT/s) and megatransfers per second (MT/s) are informal language that refer to the number of operations transferring data that occur in each second in some given data-transfer channel. It is also known as sample rate, i.e. the number of data samples captured per second, each sample normally occurring at the clock edge. The terms are neutral with respect to the method of physically accomplishing each such data-transfer operation; nevertheless, they are most commonly used in the context of transmission of digital data. 1 MT/s is 106 or one million transfers per second; similarly, 1 GT/s means 109, or equivalently in the US/short scale, one billion transfers per second.

Magnetic tape data storage is a system for storing digital information on magnetic tape using digital recording.

In telecommunications, data-transfer rate is the average number of bits (bitrate), characters or symbols (baudrate), or data blocks per unit time passing through a communication link in a data-transmission system. Common data rate units are multiples of bits per second (bit/s) and bytes per second (B/s). For example, the data rates of modern residential high-speed Internet connections are commonly expressed in megabits per second (Mbit/s).

In computing, bandwidth is the maximum rate of data transfer across a given path. Bandwidth may be characterized as network bandwidth, data bandwidth, or digital bandwidth.

In data networking, telecommunications, and computer buses, an acknowledgement (ACK) is a signal that is passed between communicating processes, computers, or devices to signify acknowledgement, or receipt of message, as part of a communications protocol. The negative-acknowledgement signal is sent to reject a previously received message or to indicate some kind of error. Acknowledgements and negative acknowledgements inform a sender of the receiver's state so that it can adjust its own state accordingly.

DATAmatic 1000

The DATAmatic 1000 is an obsolete computer system from Honeywell introduced in 1957. It uses vacuum tubes and crystal diodes for logic, and featured a unique magnetic tape format for storage.

References

PD-icon.svg This article incorporates  public domain material from the General Services Administration document: "Federal Standard 1037C".(in support of MIL-STD-188)