Eglin steel (ES-1) is a high-strength, high-performance, low-alloy, low-cost steel, developed for a new generation of bunker buster type bombs, e.g. the Massive Ordnance Penetrator and the improved version of the GBU-28 bomb known as EGBU-28. It was developed in collaboration between the US Air Force and the Ellwood National Forge Company.
The development of Eglin steel was commissioned to find a low-cost replacement for strong and tough but expensive superalloy steels such as AF-1410, Aermet-100, HY-180, and HP9-4-20/30. A high-performance casing material is required so the weapon survives the high impact speeds required for deep penetration. The material has a wide range of other applications, from missile parts and tank bodies to machine parts.
The material can be less expensive because it can be ladle-refined. It does not require vacuum processing. Unlike some other high-performance alloys, Eglin steel can be welded easily, broadening the range of its application. Also, it uses roughly half as much nickel as other superalloys, substituting silicon to help with toughness and particles of vanadium carbide and tungsten carbide for additional hardness and high-temperature strength. The material also involves chromium, tungsten, and low to medium amounts of carbon, which contribute to the material's strength and hardness.
At room temperature, ES-1's yield (tensile strength before deformation) is 193,900 psi (1,337 MPa), ultimate strength (breaking point) is 246,700 psi (1,701 MPa). At 900°F (482°C), yield is 191,400 psi (1,320 MPa), and ultimate strength is 215,700 psi (1,487 MPa). Rockwell C hardness is 45.6 (448 HV10). For toughness, the Charpy notch impact is 56.2 foot-pounds (76 J) at room temperature, and 42.7 ft-lbs (58 J) at -40F (-40°C). [1]
ES-1 is a balance of cost, tensile strength, high temperature tensile strength and toughness. By varying the heat treatment to include water or liquid nitrogen quenching, or omitting the normalization heat-treat to permit work hardening, properties can be improved. [2] ES-5, with an economical air and water quench, [3] provides 244,800 psi (1,688 MPa) of high-rate yield strength, and 291,900 psi (2,013 MPa) high-rate ultimate strength. [4] Low-rate yield strength is 216,000 psi (1,489 MPa), and low-rate ultimate strength is 270,200 psi (1,863 MPa).
By comparison, ordinary structural steel has a yield strength of 36,000 psi, 4150 "ordnance" steel (used in high-quality military gun barrels) has a yield strength of 75,000 psi.
The material composition by weight is: [5]
The material has an unusually wide range of production methods for a superalloy: electric arc, ladle refined with vacuum treatment; vacuum induction melting; vacuum arc remelting, and even electro slag remelting. Vacuum treatments are recommended for best strength and premium uses. [6]
The material has to undergo heat treatment involving normalization, quenching and tempering to develop the required austenitic microstructure, with subsequent tempering. Test plates were 1 inch. First they were normalized. They were charged in a furnace at 500F. Heated at 125F per hour to 1625–1725F. Held at 1750F for an hour per inch of section size, and then air-cooled to room temperature. Next the samples were austenized by repeating the process up to 1700F, and held for an hour per inch of section size, then oil quenched to below 125F. Finally, they were tempered by in an oven that started below 500F, increased at 100F per hour per inch of section size, and allowed to air-cool to room temperature. [7]
The patent credits Morris Dilmore and James Ruhlman as inventors.
Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K (727 °C); other alloys of steel have different eutectoid temperatures. The austenite allotrope is named after Sir William Chandler Roberts-Austen (1843–1902); it exists at room temperature in some stainless steels due to the presence of nickel stabilizing the austenite at lower temperatures.
High-strength low-alloy steel (HSLA) is a type of alloy steel that provides better mechanical properties or greater resistance to corrosion than carbon steel. HSLA steels vary from other steels in that they are not made to meet a specific chemical composition but rather specific mechanical properties. They have a carbon content between 0.05 and 0.25% to retain formability and weldability. Other alloying elements include up to 2.0% manganese and small quantities of copper, nickel, niobium, nitrogen, vanadium, chromium, molybdenum, titanium, calcium, rare-earth elements, or zirconium. Copper, titanium, vanadium, and niobium are added for strengthening purposes. These elements are intended to alter the microstructure of carbon steels, which is usually a ferrite-pearlite aggregate, to produce a very fine dispersion of alloy carbides in an almost pure ferrite matrix. This eliminates the toughness-reducing effect of a pearlitic volume fraction yet maintains and increases the material's strength by refining the grain size, which in the case of ferrite increases yield strength by 50% for every halving of the mean grain diameter. Precipitation strengthening plays a minor role, too. Their yield strengths can be anywhere between 250–590 megapascals (36,000–86,000 psi). Because of their higher strength and toughness HSLA steels usually require 25 to 30% more power to form, as compared to carbon steels.
Martensitic stainless steel is a type of stainless steel alloy that has a martensite crystal structure. It can be hardened and tempered through aging and heat treatment. The other main types of stainless steel are austenitic, ferritic, duplex, and precipitation hardened.
Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:
Tool steel is any of various carbon steels and alloy steels that are particularly well-suited to be made into tools and tooling, including cutting tools, dies, hand tools, knives, and others. Their suitability comes from their distinctive hardness, resistance to abrasion and deformation, and their ability to hold a cutting edge at elevated temperatures. As a result, tool steels are suited for use in the shaping of other materials, as for example in cutting, machining, stamping, or forging.
High-speed steel is a subset of tool steels, commonly used as cutting tool material.
In materials science, quenching is the rapid cooling of a workpiece in water, oil, polymer, air, or other fluids to obtain certain material properties. A type of heat treating, quenching prevents undesired low-temperature processes, such as phase transformations, from occurring. It does this by reducing the window of time during which these undesired reactions are both thermodynamically favorable, and kinetically accessible; for instance, quenching can reduce the crystal grain size of both metallic and plastic materials, increasing their hardness.
Maraging steels are steels that are known for possessing superior strength and toughness without losing ductility. Aging refers to the extended heat-treatment process. These steels are a special class of very-low-carbon ultra-high-strength steels that derive their strength not from carbon, but from precipitation of intermetallic compounds. The principal alloying element is 15 to 25 wt% nickel. Secondary alloying elements, which include cobalt, molybdenum and titanium, are added to produce intermetallic precipitates. Original development was carried out on 20 and 25 wt% Ni steels to which small additions of aluminium, titanium, and niobium were made; a rise in the price of cobalt in the late 1970s led to the development of cobalt-free maraging steels.
In materials science, work hardening, also known as strain hardening, is the strengthening of a metal or polymer by plastic deformation. Work hardening may be desirable, undesirable, or inconsequential, depending on the context.
Tempering is a process of heat treating, which is used to increase the toughness of iron-based alloys. Tempering is usually performed after hardening, to reduce some of the excess hardness, and is done by heating the metal to some temperature below the critical point for a certain period of time, then allowing it to cool in still air. The exact temperature determines the amount of hardness removed, and depends on both the specific composition of the alloy and on the desired properties in the finished product. For instance, very hard tools are often tempered at low temperatures, while springs are tempered at much higher temperatures.
A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Several key characteristics of a superalloy are excellent mechanical strength, resistance to thermal creep deformation, good surface stability, and resistance to corrosion or oxidation.
A514 is a particular type of high strength steel, which is quenched and tempered alloy steel, with a yield strength of 100,000 psi. The ArcelorMittal trademarked name is T-1. A514 is primarily used as a structural steel for building construction. A517 is a closely related alloy that is used for the production of high-strength pressure vessels.
AerMet alloy is an ultra-high strength type of martensitic alloy steel. The main alloying elements are cobalt and nickel, but chromium, molybdenum and carbon are also added. Its exceptional properties are hardness, tensile strength, fracture toughness and ductility. Aermet is weldable with no preheating needed. AerMet alloy is not corrosion resistant, so it must be sealed if used in a moist environment. AerMet is a registered trademark of Carpenter Technology Corporation.
Glidcop is a family of copper-based metal matrix composite (MMC) alloys mixed primarily with small amounts of aluminum oxide ceramic particles. It is a trademark of North American Höganäs. The name is sometimes written GlidCop or GLIDCOP.
Mangalloy, also called manganese steel or Hadfield steel, is an alloy steel containing an average of around 13% manganese. Mangalloy is known for its high impact strength and resistance to abrasion once in its work-hardened state.
Concrete has relatively high compressive strength, but significantly lower tensile strength. The compressive strength is typically controlled with the ratio of water to cement when forming the concrete, and tensile strength is increased by additives, typically steel, to create reinforced concrete. In other words we can say concrete is made up of sand, ballast, cement and water.
5059 is an aluminium alloy, primarily alloyed with magnesium. It is not strengthened by heat treatment, instead becoming stronger due to strain hardening, or cold mechanical working of the material.
Havar, or UNS R30004, is an alloy of cobalt, possessing a very high mechanical strength. It can be heat-treated. It is highly resistant to corrosion and is non-magnetic. It is biocompatible. It has high fatigue resistance. It is a precipitation hardening superalloy.
USAF-96 is a high-strength, high-performance, low-alloy, low-cost steel, developed for new generation of bunker buster type bombs, e.g. the Massive Ordnance Penetrator and the improved version of the GBU-28 bomb known as EGBU-28. It was developed by the US Air Force at the Eglin Air Force Munitions Directorate. It uses only materials domestic to the USA. In particular it requires no tungsten.