Elastocaloric materials

Last updated

Elastocaloric materials are a class of advanced materials. These materials show a big change in temperature when mechanical stress is applied and then removed.

Contents

This phenomenon, known as the elastocaloric effect, is the reversible thermal response of the material to mechanical loading and unloading. The effect is often caused by changes in entropy within the material's structure. This can be due to phase transformations or reorientation of crystalline domains. Unlike conventional materials, elastocaloric materials can experience substantial temperature changes under mechanical stress. This makes them promising for solid-state refrigeration and heating applications. [1] [2]

The relevance of elastocaloric materials lies in their potential to revolutionize the cooling and heating systems that are integral to modern life. Traditional cooling technologies, such as vapor-compression refrigeration, rely on harmful refrigerants that contribute to global warming and have significant energy consumption. These materials can potentially replace conventional systems, leading to reduced greenhouse gas emissions and lower energy usage. [3]

Elastocaloric Effect

The elastocaloric effect is a complex thermomechanical phenomenon in which a material experiences a temperature change as a result of mechanical stress. When mechanical stress is applied to an elastocaloric material—through stretching, compressing, or bending—the material can either absorb heat from its surroundings (resulting in cooling) or release heat (resulting in heating). This effect arises primarily due to a change in the material's entropy. The change in entropy is often linked to a phase transition or the reorientation of the material's crystalline structure.

Shape memory alloys (SMAs) have the elastocaloric effect. This effect is closely connected to the reversible phase transition between different crystal structures. For example, the transition from austenite to martensite. During this transition, the entropy of the system changes. This is due to the rearrangement of atoms and changes in internal energy. The transformation from a high-symmetry austenitic phase to a low-symmetry martensitic phase can either absorb or release latent heat. This depends on whether the process is endothermic or exothermic. The temperature change (ΔT) depends on several factors: material composition - the specific elements and their concentrations in the alloy can significantly influence the phase transition temperature and the associated entropy change; microstructure - the size, distribution, and orientation of grains within the material can affect the mechanical properties and the efficiency of the phase transition; mechanical load - the type and magnitude of the applied stress determine the extent of the phase transition and, consequently, the temperature change. By controlling these factors, the elastocaloric effect can be finely tuned. This allows for the design of materials with tailored thermal responses for specific applications. [3] [4] [5]

Materials

Elastocaloric materials are diverse and include a range of shape memory alloys (SMAs), which are among the most widely studied due to their pronounced phase transition properties. Notable examples include:

The choice of material for elastocaloric applications depends on several criteria, including the desired operating temperature range, the required mechanical strength, the material's durability under cyclic loading (fatigue resistance), and cost considerations. [7]

Comparison with Other Caloric Effects

The elastocaloric effect is part of a broader category of caloric effects that can be utilized for solid-state cooling technologies. Other notable caloric effects include:

Compared to the magnetocaloric and electrocaloric effects, the elastocaloric effect offers several distinct advantages:

These unique attributes make elastocaloric materials a promising avenue for developing next-generation cooling technologies that are more energy-efficient and environmentally friendly than current systems.

Related Research Articles

<span class="mw-page-title-main">Refrigeration</span> Process of moving heat from one location to another in controlled conditions

Refrigeration is any of various types of cooling of a space, substance, or system to lower and/or maintain its temperature below the ambient one. Refrigeration is an artificial, or human-made, cooling method.

<span class="mw-page-title-main">Heat treating</span> Process of heating something to alter it

Heat treating is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also used in the manufacture of many other materials, such as glass. Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material. Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering, carburizing, normalizing and quenching. Although the term heat treatment applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally, heating and cooling often occur incidentally during other manufacturing processes such as hot forming or welding.

<span class="mw-page-title-main">Magnetic refrigeration</span> Phenomenon in which a suitable material can be cooled by a changing magnetic field

Magnetic refrigeration is a cooling technology based on the magnetocaloric effect. This technique can be used to attain extremely low temperatures, as well as the ranges used in common refrigerators.

<span class="mw-page-title-main">Amorphous metal</span> Solid metallic material with disordered atomic-scale structure

An amorphous metal is a solid metallic material, usually an alloy, with disordered atomic-scale structure. Most metals are crystalline in their solid state, which means they have a highly ordered arrangement of atoms. Amorphous metals are non-crystalline, and have a glass-like structure. But unlike common glasses, such as window glass, which are typically electrical insulators, amorphous metals have good electrical conductivity and can show metallic luster.

<span class="mw-page-title-main">Superconducting magnet</span> Electromagnet made from coils of superconducting wire

A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting electromagnets, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings. They are used in MRI instruments in hospitals, and in scientific equipment such as NMR spectrometers, mass spectrometers, fusion reactors and particle accelerators. They are also used for levitation, guidance and propulsion in a magnetic levitation (maglev) railway system being constructed in Japan.

In metallurgy, a shape-memory alloy (SMA) is an alloy that can be deformed when cold but returns to its pre-deformed ("remembered") shape when heated. It is also known in other names such as memory metal, memory alloy, smart metal, smart alloy, and muscle wire. The "memorized geometry" can be modified by fixating the desired geometry and subjecting it to a thermal treatment, for example a wire can be taught to memorize the shape of a coil spring.

A magnetic shape-memory alloy (MSMA) is a type of smart material that can undergo significant and reversible changes in shape in response to a magnetic field. This behavior arises due to a combination of magnetic and shape-memory properties within the alloy, allowing it to produce mechanical motion or force under magnetic actuation. MSMAs are commonly made from ferromagnetic materials, particularly nickel-manganese-gallium (Ni-Mn-Ga), and are useful in applications requiring rapid, controllable, and repeatable movement.

Smart materials, also called intelligent or responsive materials, are designed materials that have one or more properties that can be significantly changed in a controlled fashion by external stimuli, such as stress, moisture, electric or magnetic fields, light, temperature, pH, or chemical compounds. Smart materials are the basis of many applications, including sensors and actuators, or artificial muscles, particularly as electroactive polymers (EAPs).

<span class="mw-page-title-main">Maraging steel</span> Steel known for strength and toughness

Maraging steels are steels that are known for possessing superior strength and toughness without losing ductility. Aging refers to the extended heat-treatment process. These steels are a special class of very-low-carbon ultra-high-strength steels that derive their strength not from carbon, but from precipitation of intermetallic compounds. The principal alloying element is 15 to 25 wt% nickel. Secondary alloying elements, which include cobalt, molybdenum and titanium, are added to produce intermetallic precipitates.

In physics, mechanics and engineering, an adiabatic shear band is one of the many mechanisms of failure that occur in metals and other materials that are deformed at a high rate in processes such as metal forming, machining and ballistic impact. Adiabatic shear bands are usually very narrow bands, typically 5-500 μm wide and consisting of highly sheared material. Adiabatic is a thermodynamic term meaning an absence of heat transfer – the heat produced is retained in the zone where it is created.

<span class="mw-page-title-main">Heusler compound</span> Type of metallic alloy

Heusler compounds are magnetic intermetallics with face-centered cubic crystal structure and a composition of XYZ (half-Heuslers) or X2YZ (full-Heuslers), where X and Y are transition metals and Z is in the p-block. The term derives from the name of German mining engineer and chemist Friedrich Heusler, who studied such a compound (Cu2MnAl) in 1903. Many of these compounds exhibit properties relevant to spintronics, such as magnetoresistance, variations of the Hall effect, ferro-, antiferro-, and ferrimagnetism, half- and semimetallicity, semiconductivity with spin filter ability, superconductivity, topological band structure and are actively studied as thermoelectric materials. Their magnetism results from a double-exchange mechanism between neighboring magnetic ions. Manganese, which sits at the body centers of the cubic structure, was the magnetic ion in the first Heusler compound discovered. (See the Bethe–Slater curve for details of why this happens.)

The electrocaloric effect is a phenomenon in which a material shows a reversible temperature change under an applied electric field.

In materials science, pseudoelasticity, sometimes called superelasticity, is an elastic (reversible) response to an applied stress, caused by a phase transformation between the austenitic and martensitic phases of a crystal. It is exhibited in shape-memory alloys.

<span class="mw-page-title-main">Nickel titanium</span> Alloy known for shape-memory effect

Nickel titanium, also known as nitinol, is a metal alloy of nickel and titanium, where the two elements are present in roughly equal atomic percentages. Different alloys are named according to the weight percentage of nickel; e.g., nitinol 55 and nitinol 60.

Shape-memory polymers (SMPs) are polymeric smart materials that have the ability to return from a deformed state to their original (permanent) shape when induced by an external stimulus (trigger), such as temperature change.

Methods have been devised to modify the yield strength, ductility, and toughness of both crystalline and amorphous materials. These strengthening mechanisms give engineers the ability to tailor the mechanical properties of materials to suit a variety of different applications. For example, the favorable properties of steel result from interstitial incorporation of carbon into the iron lattice. Brass, a binary alloy of copper and zinc, has superior mechanical properties compared to its constituent metals due to solution strengthening. Work hardening has also been used for centuries by blacksmiths to introduce dislocations into materials, increasing their yield strengths.

<span class="mw-page-title-main">Glass transition</span> Reversible transition in amorphous materials

The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials from a hard and relatively brittle "glassy" state into a viscous or rubbery state as the temperature is increased. An amorphous solid that exhibits a glass transition is called a glass. The reverse transition, achieved by supercooling a viscous liquid into the glass state, is called vitrification.

<span class="mw-page-title-main">High-entropy alloy</span> Alloys with high proportions of several metals

High-entropy alloys (HEAs) are alloys that are formed by mixing equal or relatively large proportions of (usually) five or more elements. Prior to the synthesis of these substances, typical metal alloys comprised one or two major components with smaller amounts of other elements. For example, additional elements can be added to iron to improve its properties, thereby creating an iron-based alloy, but typically in fairly low proportions, such as the proportions of carbon, manganese, and others in various steels. Hence, high-entropy alloys are a novel class of materials. The term "high-entropy alloys" was coined by Taiwanese scientist Jien-Wei Yeh because the entropy increase of mixing is substantially higher when there is a larger number of elements in the mix, and their proportions are more nearly equal. Some alternative names, such as multi-component alloys, compositionally complex alloys and multi-principal-element alloys are also suggested by other researchers.

<span class="mw-page-title-main">Thermally induced shape-memory effect (polymers)</span>

The thermally induced unidirectional shape-shape-memory effect is an effect classified within the new so-called smart materials. Polymers with thermally induced shape-memory effect are new materials, whose applications are recently being studied in different fields of science, communications and entertainment.

Barocaloric materials are characterized by strong, reversible thermic responses to changes in pressure. Many involve solid-to-solid phase changes from disordered to ordered and rigid under increased pressure, releasing heat. Barocaloric solids undergo solid-to-solid phase change. One barocaloric material processes heat without a phase change: natural rubber.

References

  1. Qian, Suxin; Catalini, David; Muehlbauer, Jan; Liu, Boyang; Mevada, Het; Hou, Huilong; Hwang, Yunho; Radermacher, Reinhard; Takeuchi, Ichiro (19 May 2023). "High-performance multimode elastocaloric cooling system". Science. 380 (6646): 722–727. Bibcode:2023Sci...380..722Q. doi:10.1126/science.adg7043. PMID   37200413.
  2. Qian, Suxin; Geng, Yunlong; Wang, Yi; Ling, Jiazhen; Hwang, Yunho; Radermacher, Reinhard; Takeuchi, Ichiro; Cui, Jun (April 2016). "A review of elastocaloric cooling: Materials, cycles and system integrations". International Journal of Refrigeration. 64: 1–19. doi:10.1016/j.ijrefrig.2015.12.001.
  3. 1 2 "Elastocaloric Effect". CaloriCool. Archived from the original on 2024-08-03. Retrieved 2024-08-03.
  4. Zhang, Shixian; Yang, Quanling; Li, Chenjian; Fu, Yuheng; Zhang, Huaqing; Ye, Zhiwei; Zhou, Xingnan; Li, Qi; Wang, Tao; Wang, Shan; Zhang, Wenqing; Xiong, Chuanxi; Wang, Qing (10 January 2022). "Solid-state cooling by elastocaloric polymer with uniform chain-lengths". Nature Communications. 13 (1): 9. Bibcode:2022NatCo..13....9Z. doi:10.1038/s41467-021-27746-y. PMC   8748545 . PMID   35013283.
  5. Li, Cheng; Huang, Yu Hui; Wang, Jian-Jun; Wang, Bo; Wu, Yong Jun; Tian, He; Chen, Long-Qing; Hong, Zijian (16 August 2021). "Giant room temperature elastocaloric effect in metal-free thin-film perovskites". npj Computational Materials. 7 (1): 132. Bibcode:2021npjCM...7..132L. doi: 10.1038/s41524-021-00599-1 .
  6. Zhang, Shixian; Yang, Quanling; Li, Chenjian; Fu, Yuheng; Zhang, Huaqing; Ye, Zhiwei; Zhou, Xingnan; Li, Qi; Wang, Tao; Wang, Shan; Zhang, Wenqing; Xiong, Chuanxi; Wang, Qing (10 January 2022). "Solid-state cooling by elastocaloric polymer with uniform chain-lengths | Nature Communications". Nature . 13 (1): 9. doi:10.1038/s41467-021-27746-y. PMC   8748545 . PMID   35013283. Archived from the original on 18 February 2024. Retrieved 16 August 2024.
  7. "Physical Properties of Elastocaloric Materials". CaloriCool.