Electro-switchable biosurface

Last updated

An electro-switchable biosurface is a biosensor that is based on an electrode (often gold) to which a layer of biomolecules (often DNA molecules) has been tethered. An alternating or fixed electrical potential is applied to the electrode which causes changes in the structure and position (movement) of the charged biomolecules. The biosensor is used in science, e.g. biomedical and biophysical research or drug discovery, to assess interactions between biomolecules and binding kinetics as well as changes in size or conformation of biomolecules.

Contents

Technological background

The general principle of a biosurface is a solid surface with an additional layer of biological macromolecules. Because this molecular layer will reversibly respond to changes in the environment of the surface, it is also called “stimuli-responsive monolayer”. The external stimuli can be for example changes in temperature, changes in magnetic fields, mechanical forces or changes in electric fields. [1] Different strategies can be used to attach a monolayer of biomolecules to a surface, for example atomic layer deposition or layer-by-layer deposition. Another option is the fabrication of self-assembled monolayers (SAM). [2] The surface used most often with this strategy is a gold electrode. SAM form by spontaneous organization of the molecules, for example alkanethiolates, on the substrate. SAM can be used as surface layers for nanoparticles, e.g. in MRI contrast agents, they can protect metal films from corrosion, and have many other applications in electrochemistry and nanoscience. [3] For their application as a biosensor, one of the most often used molecules self-assembling on gold electrodes is DNA. Due to its molecular structure, double stranded DNA molecules are negatively charged and rigid. By applying an alternating potential to the biosurface, the attached DNA strands can be moved systematically because they will switch between an upright position and a flat position. [4] [5] This enables the usage of the biosurface as a biosensor.

Applications

The ability to control the electrode potential for electro-switchable biosurfaces facilitates several different applications. [6] One example is the field of molecular electronics, for instance the investigation of DNA-mediated charge transfer. [7] [8]

Another application is the analysis of molecular interactions. To that end, the DNA strand is labeled with a fluorescent dye. Excited fluorescent dyes can transfer energy to metal. Consequently, the fluorescence is quenched in proximity to the metal electrode. [9] [10] To measure interactions, a ligand is additionally attached at the head of the DNA molecule and the interacting analyte is flushed across the biosensor. Two different measurement modes can be performed with the biosensor, a static mode and a dynamic mode. In static mode, the potential applied to the electrode is fixed, keeping the DNA molecule in an upright position. Binding of the analyte to the ligand will change the local environment of the fluorescent dye and thereby quench its fluorescence. The static mode can also be used to measure the activity of enzymes like polymerases that influence the structure of the DNA molecule. [11] In dynamic mode, the potential applied to the electrode is oscillating, thus the DNA molecule switches between the upright and the horizontal position. Binding of an analyte will change the size of the attached complex. Consequently, the hydrodynamic friction will change and the DNA molecule will move through the buffer with a different speed. This speed change can be used to investigate size changes or conformational changes induced by the binding of the analyte. The application of electro-switchable biosurfaces as a sensor for molecular interactions is also known as switchSENSE technology. [12] [13] [14] [15] [16] It belongs to the category of microfluidic surface-bound methods to measure molecular interactions.

Electro-switchable biosurfaces equipped with DNA strands can be used to analyze the binding of an analyte to a ligand, conformations or enzymatic activity. V = voltage applied to the electrode. Electroswitchable surface applications.png
Electro-switchable biosurfaces equipped with DNA strands can be used to analyze the binding of an analyte to a ligand, conformations or enzymatic activity. V = voltage applied to the electrode.

A similar application in this category is surface plasmon resonance (SPR), where a thin gold film on top of a glass slide is the sensor surface. In SPR, the gold film can additionally be modified with SAM or other specific layers. One difference to electro-switchable biosurfaces is that no potential is applied to the SPR surface. [17] In contrast to surface-bound methods, there are also in-solution methods to measure molecule interactions, for example isothermal titration calorimetry (ITC).

The electric potential cannot only be used to control the movement of the DNA strands, but also to control the release of the molecules into solution. This has possible applications in the field of gene therapy since it might enable the delivery of genetic material to specific locations. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Electrophysiology</span> Study of the electrical properties of biological cells and tissues.

Electrophysiology is the branch of physiology that studies the electrical properties of biological cells and tissues. It involves measurements of voltage changes or electric current or manipulations on a wide variety of scales from single ion channel proteins to whole organs like the heart. In neuroscience, it includes measurements of the electrical activity of neurons, and, in particular, action potential activity. Recordings of large-scale electric signals from the nervous system, such as electroencephalography, may also be referred to as electrophysiological recordings. They are useful for electrodiagnosis and monitoring.

<span class="mw-page-title-main">Fluorescent tag</span>

In molecular biology and biotechnology, a fluorescent tag, also known as a fluorescent label or fluorescent probe, is a molecule that is attached chemically to aid in the detection of a biomolecule such as a protein, antibody, or amino acid. Generally, fluorescent tagging, or labeling, uses a reactive derivative of a fluorescent molecule known as a fluorophore. The fluorophore selectively binds to a specific region or functional group on the target molecule and can be attached chemically or biologically. Various labeling techniques such as enzymatic labeling, protein labeling, and genetic labeling are widely utilized. Ethidium bromide, fluorescein and green fluorescent protein are common tags. The most commonly labelled molecules are antibodies, proteins, amino acids and peptides which are then used as specific probes for detection of a particular target.

A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The sensitive biological element, e.g. tissue, microorganisms, organelles, cell receptors, enzymes, antibodies, nucleic acids, etc., is a biologically derived material or biomimetic component that interacts with, binds with, or recognizes the analyte under study. The biologically sensitive elements can also be created by biological engineering. The transducer or the detector element, which transforms one signal into another one, works in a physicochemical way: optical, piezoelectric, electrochemical, electrochemiluminescence etc., resulting from the interaction of the analyte with the biological element, to easily measure and quantify. The biosensor reader device connects with the associated electronics or signal processors that are primarily responsible for the display of the results in a user-friendly way. This sometimes accounts for the most expensive part of the sensor device, however it is possible to generate a user friendly display that includes transducer and sensitive element. The readers are usually custom-designed and manufactured to suit the different working principles of biosensors.

<span class="mw-page-title-main">Colloidal gold</span> Suspension of gold nanoparticles in a liquid

Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is usually either wine-red coloured or blue/purple . Due to their optical, electronic, and molecular-recognition properties, gold nanoparticles are the subject of substantial research, with many potential or promised applications in a wide variety of areas, including electron microscopy, electronics, nanotechnology, materials science, and biomedicine.

<span class="mw-page-title-main">Self-assembled monolayer</span>

Self-assembled monolayers (SAM) of organic molecules are molecular assemblies formed spontaneously on surfaces by adsorption and are organized into more or less large ordered domains. In some cases molecules that form the monolayer do not interact strongly with the substrate. This is the case for instance of the two-dimensional supramolecular networks of e.g. perylenetetracarboxylic dianhydride (PTCDA) on gold or of e.g. porphyrins on highly oriented pyrolitic graphite (HOPG). In other cases the molecules possess a head group that has a strong affinity to the substrate and anchors the molecule to it. Such a SAM consisting of a head group, tail and functional end group is depicted in Figure 1. Common head groups include thiols, silanes, phosphonates, etc.

<span class="mw-page-title-main">Molecular imprinting</span> Technique in polymer chemistry

Molecular imprinting is a technique to create template-shaped cavities in polymer matrices with predetermined selectivity and high affinity. This technique is based on the system used by enzymes for substrate recognition, which is called the "lock and key" model. The active binding site of an enzyme has a shape specific to a substrate. Substrates with a complementary shape to the binding site selectively bind to the enzyme; alternative shapes that do not fit the binding site are not recognized.

<span class="mw-page-title-main">Surface plasmon resonance</span> Physical phenomenon of electron resonance

Surface plasmon resonance (SPR) is a phenomenon that occurs where electrons in a thin metal sheet become excited by light that is directed to the sheet with a particular angle of incidence, and then travel parallel to the sheet. Assuming a constant light source wavelength and that the metal sheet is thin, the angle of incidence that triggers SPR is related to the refractive index of the material and even a small change in the refractive index will cause SPR to not be observed. This makes SPR a possible technique for detecting particular substances (analytes) and SPR biosensors have been developed to detect various important biomarkers

<span class="mw-page-title-main">Biointerface</span>

A biointerface is the region of contact between a biomolecule, cell, biological tissue or living organism or organic material considered living with another biomaterial or inorganic/organic material. The motivation for biointerface science stems from the urgent need to increase the understanding of interactions between biomolecules and surfaces. The behavior of complex macromolecular systems at materials interfaces are important in the fields of biology, biotechnology, diagnostics, and medicine. Biointerface science is a multidisciplinary field in which biochemists who synthesize novel classes of biomolecules cooperate with scientists who have developed the tools to position biomolecules with molecular precision, scientists who have developed new spectroscopic techniques to interrogate these molecules at the solid-liquid interface, and people who integrate these into functional devices. Well-designed biointerfaces would facilitate desirable interactions by providing optimized surfaces where biological matter can interact with other inorganic or organic materials, such as by promoting cell and tissue adhesion onto a surface.

<span class="mw-page-title-main">Bio-MEMS</span>

Bio-MEMS is an abbreviation for biomedical microelectromechanical systems. Bio-MEMS have considerable overlap, and is sometimes considered synonymous, with lab-on-a-chip (LOC) and micro total analysis systems (μTAS). Bio-MEMS is typically more focused on mechanical parts and microfabrication technologies made suitable for biological applications. On the other hand, lab-on-a-chip is concerned with miniaturization and integration of laboratory processes and experiments into single chips. In this definition, lab-on-a-chip devices do not strictly have biological applications, although most do or are amenable to be adapted for biological purposes. Similarly, micro total analysis systems may not have biological applications in mind, and are usually dedicated to chemical analysis. A broad definition for bio-MEMS can be used to refer to the science and technology of operating at the microscale for biological and biomedical applications, which may or may not include any electronic or mechanical functions. The interdisciplinary nature of bio-MEMS combines material sciences, clinical sciences, medicine, surgery, electrical engineering, mechanical engineering, optical engineering, chemical engineering, and biomedical engineering. Some of its major applications include genomics, proteomics, molecular diagnostics, point-of-care diagnostics, tissue engineering, single cell analysis and implantable microdevices.

Reflectometric interference spectroscopy (RIfS) is a physical method based on the interference of white light at thin films, which is used to investigate molecular interaction.

<span class="mw-page-title-main">Bio-layer interferometry</span>

Bio-layer interferometry (BLI) is an optical biosensing technology that analyzes biomolecular interactions in real-time without the need for fluorescent labeling. Alongside Surface Plasmon Resonance, BLI is one of few widely available label-free biosensing technologies, a detection style that yields more information in less time than traditional processes. The technology relies on the phase shift-wavelength correlation created between interference patterns off of two unique surfaces on the tip of a biosensor. BLI has significant applications in quantifying binding strength, measuring protein interactions, and identifying properties of reaction kinetics, such as rate constants and reaction rates.

There are many methods to investigate protein–protein interactions which are the physical contacts of high specificity established between two or more protein molecules involving electrostatic forces and hydrophobic effects. Each of the approaches has its own strengths and weaknesses, especially with regard to the sensitivity and specificity of the method. A high sensitivity means that many of the interactions that occur are detected by the screen. A high specificity indicates that most of the interactions detected by the screen are occurring in reality.

Scanning electrochemical microscopy (SECM) is a technique within the broader class of scanning probe microscopy (SPM) that is used to measure the local electrochemical behavior of liquid/solid, liquid/gas and liquid/liquid interfaces. Initial characterization of the technique was credited to University of Texas electrochemist, Allen J. Bard, in 1989. Since then, the theoretical underpinnings have matured to allow widespread use of the technique in chemistry, biology and materials science. Spatially resolved electrochemical signals can be acquired by measuring the current at an ultramicroelectrode (UME) tip as a function of precise tip position over a substrate region of interest. Interpretation of the SECM signal is based on the concept of diffusion-limited current. Two-dimensional raster scan information can be compiled to generate images of surface reactivity and chemical kinetics.

Silanization of silicon and mica is the coating of these materials with a thin layer of self assembling units.

A biotransducer is the recognition-transduction component of a biosensor system. It consists of two intimately coupled parts; a bio-recognition layer and a physicochemical transducer, which acting together converts a biochemical signal to an electronic or optical signal. The bio-recognition layer typically contains an enzyme or another binding protein such as antibody. However, oligonucleotide sequences, sub-cellular fragments such as organelles and receptor carrying fragments, single whole cells, small numbers of cells on synthetic scaffolds, or thin slices of animal or plant tissues, may also comprise the bio-recognition layer. It gives the biosensor selectivity and specificity. The physicochemical transducer is typically in intimate and controlled contact with the recognition layer. As a result of the presence and biochemical action of the analyte, a physico-chemical change is produced within the biorecognition layer that is measured by the physicochemical transducer producing a signal that is proportionate to the concentration of the analyte. The physicochemical transducer may be electrochemical, optical, electronic, gravimetric, pyroelectric or piezoelectric. Based on the type of biotransducer, biosensors can be classified as shown to the right.

<span class="mw-page-title-main">Chemiresistor</span>

A chemiresistor is a material that changes its electrical resistance in response to changes in the nearby chemical environment. Chemiresistors are a class of chemical sensors that rely on the direct chemical interaction between the sensing material and the analyte. The sensing material and the analyte can interact by covalent bonding, hydrogen bonding, or molecular recognition. Several different materials have chemiresistor properties: metal-oxide semiconductors, some conductive polymers, and nanomaterials like graphene, carbon nanotubes and nanoparticles. Typically these materials are used as partially selective sensors in devices like electronic tongues or electronic noses.

<span class="mw-page-title-main">Bio-FET</span>

A field-effect transistor-based biosensor, also known as a biosensor field-effect transistor, field-effect biosensor (FEB), or biosensor MOSFET, is a field-effect transistor that is gated by changes in the surface potential induced by the binding of molecules. When charged molecules, such as biomolecules, bind to the FET gate, which is usually a dielectric material, they can change the charge distribution of the underlying semiconductor material resulting in a change in conductance of the FET channel. A Bio-FET consists of two main compartments: one is the biological recognition element and the other is the field-effect transistor. The BioFET structure is largely based on the ion-sensitive field-effect transistor (ISFET), a type of metal–oxide–semiconductor field-effect transistor (MOSFET) where the metal gate is replaced by an ion-sensitive membrane, electrolyte solution, and reference electrode.

Surface plasmon resonance microscopy (SPRM), also called surface plasmon resonance imaging (SPRI), is a label free analytical tool that combines the surface plasmon resonance of metallic surfaces with imaging of the metallic surface. The heterogeneity of the refractive index of the metallic surface imparts high contrast images, caused by the shift in the resonance angle. SPRM can achieve a sub-nanometer thickness sensitivity and lateral resolution achieves values of micrometer scale. SPRM is used to characterize surfaces such as self-assembled monolayers, multilayer films, metal nanoparticles, oligonucleotide arrays, and binding and reduction reactions. Surface plasmon polaritons are surface electromagnetic waves coupled to oscillating free electrons of a metallic surface that propagate along a metal/dielectric interface. Since polaritons are highly sensitive to small changes in the refractive index of the metallic material, it can be used as a biosensing tool that does not require labeling. SPRM measurements can be made in real-time, such as measuring binding kinetics of membrane proteins in single cells, or DNA hybridization.

Multi-parametric surface plasmon resonance (MP-SPR) is based on surface plasmon resonance (SPR), an established real-time label-free method for biomolecular interaction analysis, but it uses a different optical setup, a goniometric SPR configuration. While MP-SPR provides same kinetic information as SPR, it provides also structural information. Hence, MP-SPR measures both surface interactions and nanolayer properties.

<span class="mw-page-title-main">Single colour reflectometry</span>

Single colour reflectometry (SCORE), formerly known as imaging Reflectometric Interferometry (iRIf) and 1-lambda Reflectometry, is a physical method based on interference of monochromatic light at thin films, which is used to investigate (bio-)molecular interactions. The obtained binding curves using SCORE provide detailed information on kinetics and thermodynamics of the observed interaction(s) as well as on concentrations of the used analytes. These data can be relevant for pharmaceutical screening and drug design, biosensors and other biomedical applications, diagnostics, and cell-based assays.

References

  1. Himabindu Nandivada, Aftin M. Ross, Joerg Lahann, Stimuli-responsive monolayers for biotechnology, Progress in Polymer Science, Volume 35, Issues 1–2, 2010, Pages 141-154, ISSN 0079-6700, https://doi.org/10.1016/j.progpolymsci.2009.11.001
  2. Laromaine, A. and Mace, C.R. (2013). Self-Assembled Monolayers as Model Biosurfaces. In Organic Nanomaterials (eds T. Torres and G. Bottari). https://doi.org/10.1002/9781118354377.ch17
  3. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105(4):1103-1169. doi:10.1021/cr0300789
  4. Orienting DNA Helices on Gold Using Applied Electric Fields. Shana O. Kelley, Jacqueline K. Barton, Nicole M. Jackson, Lee D. McPherson, Aaron B. Potter, Eileen M. Spain, Michael J. Allen, and Michael G. Hill. Langmuir 1998 14 (24), 6781-6784. DOI: 10.1021/la980874n
  5. Dynamic Electrical Switching of DNA Layers on a Metal Surface. Ulrich Rant, Kenji Arinaga, Shozo Fujita, Naoki Yokoyama, Gerhard Abstreiter, and Marc Tornow. Nano Letters 2004 4 (12), 2441-2445. DOI: 10.1021/nl0484494
  6. 1 2 Shoseyov, O. & Levy, Ilan. (2008). NanoBioTechnology: BioInspired devices and materials of the future. 10.1007/978-1-59745-218-2.
  7. Kelley SO, Jackson NM, Hill MG, Barton JK. Long-Range Electron Transfer through DNA Films. Angew Chem Int Ed Engl. 1999;38(7):941-945. doi:10.1002/(SICI)1521-3773(19990401)38:7<941::AID-ANIE941>3.0.CO;2-7
  8. Muren NB, Olmon ED, Barton JK. Solution, surface, and single molecule platforms for the study of DNA-mediated charge transport. Phys Chem Chem Phys. 2012;14(40):13754-13771. doi:10.1039/c2cp41602f
  9. Chance, R.R., Prock, A. and Silbey, R. (1978). Molecular Fluorescence and Energy Transfer Near Interfaces. In Advances in Chemical Physics (eds I. Prigogine and S.A. Rice). https://doi.org/10.1002/9780470142561.ch1
  10. Persson, Bo. (2001). Theory of the damping of excited molecules located above a metal surface. Journal of Physics C: Solid State Physics. 11. 4251. 10.1088/0022-3719/11/20/020.
  11. Bec G, Ennifar E. switchSENSE Technology for Analysis of DNA Polymerase Kinetics. Methods Mol Biol. 2021;2247:145-153. doi:10.1007/978-1-0716-1126-5_8
  12. Rant U (2012). "Sensing with electro-switchable biosurfaces". Bioanalytical Reviews. 4 (2–4): 97–114. doi:10.1007/s12566-012-0030-0. S2CID 97122344.
  13. Strasser, R., Scholl, D., Hampel, P. et al. Messung molekularer Interaktion mit dynamischen Oberflächensensoren. Biospektrum 18, 724–726 (2012). https://doi.org/10.1007/s12268-012-0252-2
  14. Sendner, C., Kim, Y.W., Rant, U., Arinaga, K., Tornow, M. and Netz, R.R. (2006), Dynamics of end grafted DNA molecules and possible biosensor applications. phys. stat. sol. (a), 203: 3476-3491. https://doi.org/10.1002/pssa.200622444
  15. Cléry A, Sohier TJM, Welte T, Langer A, Allain FHT. switchSENSE: A new technology to study protein-RNA interactions. Methods. 2017;118-119:137-145. doi:10.1016/j.ymeth.2017.03.004
  16. Velours, C., Aumont-Nicaise, M., Uebel, S. et al. Macromolecular interactions in vitro, comparing classical and novel approaches. Eur Biophys J 50, 313–330 (2021). https://doi.org/10.1007/s00249-021-01517-5
  17. Drozd M, Karoń S, Malinowska E. Recent Advancements in Receptor Layer Engineering for Applications in SPR-Based Immunodiagnostics. Sensors (Basel). 2021;21(11):3781. Published 2021 May 29. doi:10.3390/s21113781