Electron quadruplets

Last updated

The condensate of electron quadruplets is a proposed state of matter in which Cooper pairs do not exhibit long-range order, but electron quadruplets do. Such states emerge in systems with multiple broken symmetries due to the partial melting of the underlying low-temperature order, which destroys the condensates of Cooper pairs but preserves the condensates formed by pairs of preformed fermion pairs. [1] [2] One example of the proposed electron quadruplet condensates is charge-4e [3] [4] Another example is "quartic metal" phase [5] [6] is distinct from those superconductors explained by the standard BCS theory; rather than expelling magnetic field lines as in the Meissner effect, it generates them, a spontaneous Nernst effect that indicates the breaking of time-reversal symmetry. [7]

Related states can form in pair-density-wave systems. [8] In systems with a greater number of broken symmetries, theoretical studies have demonstrated the existence of charge-6e and more complex orders. [9] [10] After the theoretical possibility was raised, observations consistent with electron quadrupling were published using hole-doped Ba1-xKxFe2As2 in 2021, [7] [11] with claims of charge-4e state reported in mesoscopic samples of CsV3Sb5 soon after, in early 2022. [12]

See also

References

  1. Babaev, Egor; Sudbø, Asle; Ashcroft, N. W. (October 2004). "A superconductor to superfluid phase transition in liquid metallic hydrogen". Nature. 431 (7009): 666–668. arXiv: cond-mat/0410408 . Bibcode:2004Natur.431..666B. doi:10.1038/nature02910. ISSN   1476-4687. PMID   15470422.
  2. Smiseth, J.; Smørgrav, E.; Babaev, E.; Sudbø, A. (6 June 2005). "Field- and temperature-induced topological phase transitions in the three-dimensional N -component London superconductor". Physical Review B. 71 (21): 214509. arXiv: cond-mat/0411761 . Bibcode:2005PhRvB..71u4509S. doi:10.1103/PhysRevB.71.214509.
  3. Berg, Erez; Fradkin, Eduardo; Kivelson, Steven A. (November 2009). "Charge-4e superconductivity from pair-density-wave order in certain high-temperature superconductors". Nature Physics. 5 (11): 830–833. arXiv: 0904.1230 . Bibcode:2009NatPh...5..830B. doi:10.1038/nphys1389. ISSN   1745-2481.
  4. Radzihovsky, Leo; Vishwanath, Ashvin (2 July 2009). "Quantum Liquid Crystals in an Imbalanced Fermi Gas: Fluctuations and Fractional Vortices in Larkin-Ovchinnikov States". Physical Review Letters. 103 (1): 010404. arXiv: 0812.3945 . Bibcode:2009PhRvL.103a0404R. doi:10.1103/PhysRevLett.103.010404. PMID   19659128.
  5. Bojesen, Troels Arnfred; Babaev, Egor; Sudbø, Asle (2013-12-30). "Time reversal symmetry breakdown in normal and superconducting states in frustrated three-band systems". Physical Review B. 88 (22): 220511. arXiv: 1306.2313 . Bibcode:2013PhRvB..88v0511B. doi:10.1103/PhysRevB.88.220511.
  6. Bojesen, Troels Arnfred; Babaev, Egor; Sudbø, Asle (2014-03-11). "Phase transitions and anomalous normal state in superconductors with broken time-reversal symmetry". Physical Review B. 89 (10): 104509. arXiv: 1401.5802 . Bibcode:2014PhRvB..89j4509B. doi:10.1103/PhysRevB.89.104509.
  7. 1 2 Grinenko, Vadim; Weston, Daniel; Caglieris, Federico; Wuttke, Christoph; Hess, Christian; Gottschall, Tino; Maccari, Ilaria; Gorbunov, Denis; Zherlitsyn, Sergei; Wosnitza, Jochen; Rydh, Andreas; Kihou, Kunihiro; Lee, Chul-Ho; Sarkar, Rajib; Dengre, Shanu; Garaud, Julien; Charnukha, Aliaksei; Hühne, Ruben; Nielsch, Kornelius; Büchner, Bernd; Klauss, Hans-Henning; Babaev, Egor (2021-10-18). "State with spontaneously broken time-reversal symmetry above the superconducting phase transition". Nature Physics . 17 (11): 1254–1259. arXiv: 2103.17190 . Bibcode:2021arXiv210317190G. doi:10.1038/s41567-021-01350-9. ISSN   1745-2481. S2CID   235732434.
  8. Agterberg, D. F.; Tsunetsugu, H. (August 2008). "Dislocations and vortices in pair-density-wave superconductors". Nature Physics. 4 (8): 639–642. arXiv: 0902.0805 . Bibcode:2008NatPh...4..639A. doi:10.1038/nphys999.
  9. Herland, Egil V.; Babaev, Egor; Sudbø, Asle (8 October 2010). "Phase transitions in a three dimensional U ( 1 ) × U ( 1 ) lattice London superconductor: Metallic superfluid and charge- 4 e superconducting states". Physical Review B. 82 (13): 134511. arXiv: 1006.3311 . Bibcode:2010PhRvB..82m4511H. doi:10.1103/PhysRevB.82.134511.
  10. Agterberg, D. F.; Geracie, M.; Tsunetsugu, H. (26 July 2011). "Conventional and charge-six superfluids from melting hexagonal Fulde-Ferrell-Larkin-Ovchinnikov phases in two dimensions". Physical Review B. 84 (1): 014513. arXiv: 1106.1685 . Bibcode:2011PhRvB..84a4513A. doi:10.1103/PhysRevB.84.014513.
  11. "Superconductor reveals new state of matter involving pairs of Cooper pairs". Physics World. 2021-11-03. Retrieved 2021-11-06.
  12. Ge, Jun; Wang, Pinyuan; Xing, Ying; Yin, Qiangwei; Wang, Anqi; Shen, Jie; Lei, Hechang; Wang, Ziqiang; Wang, Jian (2022). "Charge-4⁢𝑒 and Charge-6⁢𝑒 Flux Quantization and Higher Charge Superconductivity in Kagome Superconductor Ring Devices". Physical Review X. 89 (14): 021025. arXiv: 2201.10352 . doi:10.1103/PhysRevX.14.021025.