Electronic lab notebook

Last updated

An electronic lab notebook (also known as electronic laboratory notebook, or ELN) is a computer program designed to replace paper laboratory notebooks. Lab notebooks in general are used by scientists, engineers, and technicians to document research, experiments, and procedures performed in a laboratory. A lab notebook is often maintained to be a legal document and may be used in a court of law as evidence. Similar to an inventor's notebook, the lab notebook is also often referred to in patent prosecution and intellectual property litigation.

Contents

Electronic lab notebooks offer many benefits to the user as well as organizations; they are easier to search upon, simplify data copying and backups, and support collaboration amongst many users. [1] ELNs can have fine-grained access controls, and can be more secure than their paper counterparts. [2] They also allow the direct incorporation of data from instruments, replacing the practice of printing out data to be stapled into a paper notebook. [3]

Types

ELNs can be divided into two categories:

Solutions range from specialized programs designed from the ground up for use as an ELN, to modifications or direct use of more general programs. Examples of using more general software as an ELN include using OpenWetWare, a MediaWiki install (running the same software that Wikipedia uses), WordPress, [4] or the use of general note taking software such as OneNote as an ELN. [5] [3]

ELN's come in many different forms. They can be standalone programs, use a client-server model, or be entirely web-based. Some use a lab-notebook approach, others resemble a blog.

A good many variations on the "ELN" acronym have appeared. [6] Differences between systems with different names are often subtle, with considerable functional overlap between them. Examples include "ERN" (Electronic Research Notebook), "ERMS" (Electronic Resource (or Research or Records) Management System (or Software) and SDMS (Scientific Data (or Document) Management System (or Software). Ultimately, these types of systems all strive to do the same thing: Capture, record, centralize and protect scientific data in a way that is highly searchable, historically accurate, and legally stringent, and which also promotes secure collaboration, greater efficiency, reduced mistakes and lowered total research costs.

Objectives

A good electronic laboratory notebook should offer a secure environment to protect the integrity of both data and process, whilst also affording the flexibility to adopt new processes or changes to existing processes without recourse to further software development. The package architecture should be a modular design, so as to offer the benefit of minimizing validation costs of any subsequent changes that you may wish to make in the future as your needs change.

A good electronic laboratory notebook should be an "out of the box" solution that, as standard, has fully configurable forms to comply with the requirements of regulated analytical groups through to a sophisticated ELN for inclusion of structures, spectra, chromatograms, pictures, text, etc. where a preconfigured form is less appropriate. All data within the system may be stored in a database (e.g. MySQL, MS-SQL, Oracle) and be fully searchable. The system should enable data to be collected, stored and retrieved through any combination of forms or ELN that best meets the requirements of the user.

The application should enable secure forms to be generated that accept laboratory data input via PCs and/or laptops / palmtops, and should be directly linked to electronic devices such as laboratory balances, pH meters, etc. Networked or wireless communications should be accommodated for by the package which will allow data to be interrogated, tabulated, checked, approved, stored and archived to comply with the latest regulatory guidance and legislation. A system should also include a scheduling option for routine procedures such as equipment qualification and study related timelines. It should include configurable qualification requirements to automatically verify that instruments have been cleaned and calibrated within a specified time period, that reagents have been quality-checked and have not expired, and that workers are trained and authorized to use the equipment and perform the procedures.

The laboratory accreditation criteria found in the ISO 17025 standard needs to be considered for the protection and computer backup of electronic records. These criteria can be found specifically in clause 4.13.1.4 of the standard. [7]

Electronic lab notebooks used for development or research in regulated industries, such as medical devices or pharmaceuticals, are expected to comply with FDA regulations related to software validation. The purpose of the regulations is to ensure the integrity of the entries in terms of time, authorship, and content. Unlike ELNs for patent protection, FDA is not concerned with patent interference proceedings, but is concerned with avoidance of falsification. Typical provisions related to software validation are included in the medical device regulations at 21 CFR 820 (et seq.) [8] and Title 21 CFR Part 11. [9] Essentially, the requirements are that the software has been designed and implemented to be suitable for its intended purposes. Evidence to show that this is the case is often provided by a Software Requirements Specification (SRS) setting forth the intended uses and the needs that the ELN will meet; one or more testing protocols that, when followed, demonstrate that the ELN meets the requirements of the specification and that the requirements are satisfied under worst-case conditions. Security, audit trails, prevention of unauthorized changes without substantial collusion of otherwise independent personnel (i.e., those having no interest in the content of the ELN such as independent quality unit personnel) and similar tests are fundamental. Finally, one or more reports demonstrating the results of the testing in accordance with the predefined protocols are required prior to release of the ELN software for use. If the reports show that the software failed to satisfy any of the SRS requirements, then corrective and preventive action ("CAPA") must be undertaken and documented. Such CAPA may extend to minor software revisions, or changes in architecture or major revisions. CAPA activities need to be documented as well.

Aside from the requirements to follow such steps for regulated industry, such an approach is generally a good practice in terms of development and release of any software to assure its quality and fitness for use. There are standards related to software development and testing that can be applied (see ref.).

See also

Related Research Articles

A quality management system (QMS) is a collection of business processes focused on consistently meeting customer requirements and enhancing their satisfaction. It is aligned with an organization's purpose and strategic direction. It is expressed as the organizational goals and aspirations, policies, processes, documented information, and resources needed to implement and maintain it. Early quality management systems emphasized predictable outcomes of an industrial product production line, using simple statistics and random sampling. By the 20th century, labor inputs were typically the most costly inputs in most industrialized societies, so focus shifted to team cooperation and dynamics, especially the early signaling of problems via a continual improvement cycle. In the 21st century, QMS has tended to converge with sustainability and transparency initiatives, as both investor and customer satisfaction and perceived quality are increasingly tied to these factors. Of QMS regimes, the ISO 9000 family of standards is probably the most widely implemented worldwide – the ISO 19011 audit regime applies to both and deals with quality and sustainability and their integration.

A document management system (DMS) is usually a computerized system used to store, share, track and manage files or documents. Some systems include history tracking where a log of the various versions created and modified by different users is recorded. The term has some overlap with the concepts of content management systems. It is often viewed as a component of enterprise content management (ECM) systems and related to digital asset management, document imaging, workflow systems and records management systems.

Documentation is any communicable material that is used to describe, explain or instruct regarding some attributes of an object, system or procedure, such as its parts, assembly, installation, maintenance, and use. As a form of knowledge management and knowledge organization, documentation can be provided on paper, online, or on digital or analog media, such as audio tape or CDs. Examples are user guides, white papers, online help, and quick-reference guides. Paper or hard-copy documentation has become less common. Documentation is often distributed via websites, software products, and other online applications.

Medical software is any software item or system used within a medical context, such as:reducing the paperwork, tracking patient activity

<span class="mw-page-title-main">Laboratory information management system</span> Software infrastructure for improving research and storing data

A laboratory information management system (LIMS), sometimes referred to as a laboratory information system (LIS) or laboratory management system (LMS), is a software-based solution with features that support a modern laboratory's operations. Key features include—but are not limited to—workflow and data tracking support, flexible architecture, and data exchange interfaces, which fully "support its use in regulated environments". The features and uses of a LIMS have evolved over the years from simple sample tracking to an enterprise resource planning tool that manages multiple aspects of laboratory informatics.

ISO/IEC 17025General requirements for the competence of testing and calibration laboratories is the main standard used by testing and calibration laboratories. In most countries, ISO/IEC 17025 is the standard for which most labs must hold accreditation in order to be deemed technically competent. In many cases, suppliers and regulatory authorities will not accept test or calibration results from a lab that is not accredited. Originally known as ISO/IEC Guide 25, ISO/IEC 17025 was initially issued by ISO/IEC in 1999. There are many commonalities with the ISO 9000 standard, but ISO/IEC 17025 is more specific in requirements for competence and applies directly to those organizations that produce testing and calibration results and is based on more technical principles. Laboratories use ISO/IEC 17025 to implement a quality system aimed at improving their ability to consistently produce valid results. Material in the standard also forms the basis for accreditation from an accreditation body.

IEC 61508 is an international standard published by the International Electrotechnical Commission (IEC) consisting of methods on how to apply, design, deploy and maintain automatic protection systems called safety-related systems. It is titled Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems.

The process of establishing documentary evidence demonstrating that a procedure, process, or activity carried out in testing and then production maintains the desired level of compliance at all stages. In the pharmaceutical industry, it is very important that in addition to final testing and compliance of products, it is also assured that the process will consistently produce the expected results. The desired results are established in terms of specifications for outcome of the process. Qualification of systems and equipment is therefore a part of the process of validation. Validation is a requirement of food, drug and pharmaceutical regulating agencies such as the US FDA and their good manufacturing practices guidelines. Since a wide variety of procedures, processes, and activities need to be validated, the field of validation is divided into a number of subsections including the following:

Title 21 is the portion of the Code of Federal Regulations that governs food and drugs within the United States for the Food and Drug Administration (FDA), the Drug Enforcement Administration (DEA), and the Office of National Drug Control Policy (ONDCP).

Laboratory informatics is the specialized application of information technology aimed at optimizing and extending laboratory operations. It encompasses data acquisition, instrument interfacing, laboratory networking, data processing, specialized data management systems, a laboratory information management system, scientific data management, and knowledge management. It has become more prevalent with the rise of other "informatics" disciplines such as bioinformatics, cheminformatics and health informatics. Several graduate programs are focused on some form of laboratory informatics, often with a clinical emphasis. A closely related - some consider subsuming - field is laboratory automation.

ISO 15189 Medical laboratories — Requirements for quality and competence is an international standard that specifies the quality management system requirements particular to medical laboratories. The standard was developed by the International Organisation for Standardization's Technical Committee 212. ISO/TC 212 assigned ISO 15189 to a working group to prepare the standard based on the details of ISO/IEC 17025:1999 General requirements for the competence of testing and calibration laboratories. This working group included provision of advice to medical laboratory users, including specifics on the collection of patient samples, the interpretation of test results, acceptable turnaround times, how testing is to be provided in a medical emergency, and the lab's role in the education and training of health care staff. While the standard is based on ISO/IEC 17025 and ISO 9001, it is a unique document that takes into consideration the specific requirements of the medical environment and the importance of the medical laboratory to patient care.

A design history file is a compilation of documentation that describes the design history of a finished medical device. The design history file, or DHF, is part of regulation introduced in 1990 when the U.S. Congress passed the Safe Medical Devices Act, which established new standards for medical devices that can cause or contribute to the death, serious illness, or injury of a patient. Prior to this legislation, U.S. Food and Drug Administration (FDA) auditors were limited to examining the production and quality control records of the device.

Title 21 CFR Part 11 is the part of Title 21 of the Code of Federal Regulations that establishes the United States Food and Drug Administration (FDA) regulations on electronic records and electronic signatures (ERES). Part 11, as it is commonly called, defines the criteria under which electronic records and electronic signatures are considered trustworthy, reliable, and equivalent to paper records.

Corrective and preventive action consists of improvements to an organization's processes taken to eliminate causes of non-conformities or other undesirable situations. It is usually a set of actions, laws or regulations required by an organization to take in manufacturing, documentation, procedures, or systems to rectify and eliminate recurring non-conformance. Non-conformance is identified after systematic evaluation and analysis of the root cause of the non-conformance. Non-conformance may be a market complaint or customer complaint or failure of machinery or a quality management system, or misinterpretation of written instructions to carry out work. The corrective and preventive action is designed by a team that includes quality assurance personnel and personnel involved in the actual observation point of non-conformance. It must be systematically implemented and observed for its ability to eliminate further recurrence of such non-conformation. The Eight disciplines problem solving method, or 8D framework, can be used as an effective method of structuring a CAPA.

An independent test organization is an organization, person, or company that tests products, materials, software, etc. according to agreed requirements. The test organization can be affiliated with the government or universities or can be an independent testing laboratory. They are independent because they are not affiliated with the producer nor the user of the item being tested: no commercial bias is present. These "contract testing" facilities are sometimes called "third party" testing or evaluation facilities.

Verification and validation are independent procedures that are used together for checking that a product, service, or system meets requirements and specifications and that it fulfills its intended purpose. These are critical components of a quality management system such as ISO 9000. The words "verification" and "validation" are sometimes preceded with "independent", indicating that the verification and validation is to be performed by a disinterested third party. "Integration verification and validation" can be abbreviated as "IV&V".

Design controls designates the application of a formal methodology to the conduct of product development activities. It is often mandatory to implement such practice when designing and developing products within regulated industries.

Barcode technology in healthcare is the use of optical machine-readable representation of data in a hospital or healthcare setting.

<span class="mw-page-title-main">Bair Hugger</span> Convective temperature management system

The Bair Hugger system is a convective temperature management system used in a hospital or surgery center to maintain a patient's core body temperature. The Bair Hugger system consists of a reusable warming unit and single-use disposable warming blankets for use before, during and after surgery. This medical device launched in 1987 and is currently manufactured by the 3M Company.

References

  1. Myers, James; Elena Mendoza; Bonnie Hoopes (2001). A Collaborative Electronic Notebook. Proceedings of the IASTED International Conference on Internet and Multimedia Systems and Applications.
  2. Myers, James (2003). Collaborative Electronic Notebooks as Electronic Records:Design Issues for the Secure Electronic Laboratory Notebook (ELN) (PDF). Proceedings of the 2003 International Symposium on Collaborative Technologies and Systems. Archived from the original (PDF) on 2011-10-15. Retrieved 2011-12-12.
  3. 1 2 Perkel, J. M. (2011). "Coding your way out of a problem". Nature Methods. 8 (7): 541–543. doi: 10.1038/nmeth.1631 . PMID   21716280. S2CID   13175560.
  4. "A universal open-source Electronic Laboratory Notebook". 2013-05-13. Retrieved 2023-07-08.
  5. Guerrero, Santiago; López-Cortés, Andrés; García-Cárdenas, Jennyfer M.; Saa, Pablo; Indacochea, Alberto; Armendáriz-Castillo, Isaac; Zambrano, Ana Karina; Yumiceba, Verónica; Pérez-Villa, Andy; Guevara-Ramírez, Patricia; Moscoso-Zea, Oswaldo; Paredes, Joel; Leone, Paola E.; Paz-y-Miño, César (2019-05-09). "A quick guide for using Microsoft OneNote as an electronic laboratory notebook". PLOS Computational Biology. 15 (5): e1006918. doi: 10.1371/journal.pcbi.1006918 . PMC   6508581 .
  6. "Labii ELN & LIMS". 2017-04-30. Retrieved 2017-04-30. "Lab Notebook (ELN) Glossary - CERF". 2016-02-16. Retrieved 2016-08-20.
  7. "ISO/IEC 17025:2005 - General Requirements for the Competence of Testing and Calibration Laboratories." ISO - International Organization for Standardization. Web. 16 Nov. 2011. <http://www.iso.org/iso/Catalogue_detail?csnumber=39883>.
  8. United States. Food and Drug Administration. Department of Health and Human Resources. 1 Food and Drugs - Subchapter H Medical Devices - Part 820 System RegCode of Federal Regulations - Title 2ulation. FDA.gov, 7 Oct. 1996. Web. <http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?cfrpart=820>.
  9. United States. Food and Drug Administration. Department of Health and Human Resources. Code of Federal Regulations - Title 21 Part 11 Electronic Records; Electronic Signatures. FDA.gov. Authority: 21 U.S.C. 321-393; 42 U.S.C. 262., 20 Mar. 1997. Web. 16 Nov. 2011. <http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?cfrpart=11>.

Further reading