This article needs additional citations for verification .(September 2017) |
Electrophoretic light scattering (also known as laser Doppler electrophoresis and phase analysis light scattering ) is based on dynamic light scattering. The frequency shift or phase shift of an incident laser beam depends on the dispersed particles mobility. With dynamic light scattering, Brownian motion causes particle motion. With electrophoretic light scattering, oscillating electric field performs this function.
The method is used for measuring electrophoretic mobility, from which zeta potential can then be calculated. Instruments for applying the method are commercially available from several manufacturers. The last set of calculations requires information on viscosity and dielectric permittivity of the dispersion medium; appropriate electrophoresis theory is also required. Sample dilution is often necessary to eliminate multiple scattering of the incident laser beam and/or particle interactions.
A laser beam passes through the electrophoresis cell, irradiates the particles dispersed in it, and is scattered by the particles. The scattered light is detected by a photo-multiplier after passing through two pinholes. There are two types of optical systems: heterodyne and fringe. Ware and Flygare [1] developed a heterodyne-type ELS instrument, that was the first instrument of this type. In a fringe optics ELS instrument, [2] a laser beam is divided into two beams. Those cross inside the electrophresis cell at a fixed angle to produce a fringe pattern. The scattered light from the particles, which migrates inside the fringe, is intensity-modulated. The frequency shifts from both types of optics obey the same equations. The observed spectra resemble each other. Oka et al. developed an ELS instrument of heterodyne-type optics [3] that is now available commercially. Its optics is shown in Fig. 3.
If the frequencies of the intersecting laser beams are the same then it is not possible to resolve the direction of the motion of the migrating particles. Instead, only the magnitude of the velocity (i.e., the speed) can be determined. Hence, the sign of the zeta potential cannot be ascertained. This limitation can be overcome by shifting the frequency of one of the beams relative to the other. Such shifting may be referred to as frequency modulation or, more colloquially, just modulation. Modulators used in ELS may include piezo-actuated mirrors or acousto-optic modulators. This modulation scheme is employed by the heterodyne light scattering method, too.
Phase-analysis light scattering (PALS) is a method for evaluating zeta potential, in which the rate of phase change of the interference between light scattered by the sample and the modulated reference beam is analyzed. This rate is compared with a mathematically generated sine wave predetermined by the modulator frequency. [4] The application of large fields, which can lead to sample heating and breakdown of the colloids is no longer required. But any non-linearity of the modulator or any change in the characteristics of the modulator with time will mean that the generated sine wave will no longer reflect the real conditions, and the resulting zeta-potential measurements become less reliable.
A further development of the PALS technique is the so-called "continuously monitored PALS" (cmPALS) technique, which addresses the non-linearity of the modulators. An extra modulator detects the interference between the modulated and unmodulated laser light. Thus, its beat frequency is solely the modulation frequency and is therefore independent of the electrophoretic motion of the particles. This results in faster measurements, higher reproducibility even at low applied electric fields as well as higher sensitivity of the measurement. [5]
The frequency of light scattered by particles undergoing electrophoresis is shifted by the amount of the Doppler effect, from that of the incident light, : . The shift can be detected by means of heterodyne optics in which the scattering light is mixed with the reference light. The autocorrelation function of intensity of the mixed light, , can be approximately described by the following damped cosine function [7].
where is a decay constant and A, B, and C are positive constants dependent on the optical system.
Damping frequency is an observed frequency, and is the frequency difference between scattered and reference light.
where is the frequency of scattered light, the frequency of the reference light, the frequency of incident light (laser light), and the modulation frequency.
The power spectrum of mixed light, namely the Fourier transform of , gives a couple of Lorenz functions at having a half-width of at the half maximum.
In addition to these two, the last term in equation (1) gives another Lorenz function at
The Doppler shift of frequency and the decay constant are dependent on the geometry of the optical system and are expressed respectively by the equations.
and
where is velocity of the particles, is the amplitude of the scattering vector, and is the translational diffusion constant of particles.
The amplitude of the scattering vector is given by the equation
Since velocity is proportional to the applied electric field, , the apparent electrophoretic mobility is define by the equation
Finally, the relation between the Doppler shift frequency and mobility is given for the case of the optical configuration of Fig. 3 by the equation
where is the strength of the electric field, the refractive index of the medium, , the wavelength of the incident light in vacuum, and the scattering angle. The sign of is a result of vector calculation and depends on the geometry of the optics.
The spectral frequency can be obtained according to Eq. (2). When , Eq. (2) is modified and expressed as
The modulation frequency can be obtained as the damping frequency without an electric field applied.
The particle diameter is obtained by assuming that the particle is spherical. This is called the hydrodynamic diameter, .
where is Boltzmann coefficient, is the absolute temperature, and the dynamic viscosity of the surrounding fluid.
Figure 4 shows two examples of heterodyne autocorrelation functions of scattered light from sodium polystyrene sulfate solution (NaPSS; MW 400,000; 4 mg/mL in 10 mM NaCl). The oscillating correlation function shown by Fig. 4a is a result of interference between the scattered light and the modulated reference light. The beat of Fig. 4b includes additionally the contribution from the frequency changes of light scattered by PSS molecules under an electrical field of 40 V/cm.
Figure 5 shows heterodyne power spectra obtained by Fourier transform of the autocorrelation functions shown in Fig. 4.
Figure 6 shows plots of Doppler shift frequencies measured at various cell depth and electric field strengths, where a sample is the NaPSS solution. These parabolic curves are called profiles of electro-osmotic flow and indicate that the velocity of the particles changed at different depth. The surface potential of the cell wall produces electro-osmotic flow. Since the electrophoresis chamber is a closed system, backward flow is produced at the center of the cell. Then the observed mobility or velocity from Eq. (7) is a result of the combination of osmotic flow and electrophoretic movement.
Electrophoretic mobility analysis has been studied by Mori and Okamoto [16], who have taken into account the effect of electro-osmotic flow at the side wall.
The profile of velocity or mobility at the center of the cell is given approximately by Eq. (11) for the case where k>5.
where
The parabolic curve of frequency shift caused by electro-osmotic flow shown in Fig. 6 fits with Eq. (11) with application of the least squares method.
Since the mobility is proportional to a frequency shift of the light scattered by a particle and the migrating velocity of a particle as indicated by Eq. (7), all the velocity, mobility, and frequency shifts are expressed by parabolic equations. Then the true electrophoretic mobility of a particle, the electro-osmotic mobility at the upper and lower cell walls, ware obtained. The frequency shift caused only by the electrophoresis of particles is equal to the apparent mobility at the stationary layer.
The velocity of the electrophoretic migration thus obtained is proportional to the electric field as shown in Fig. 7. The frequency shift increases with increase of the scattering angle as shown in Fig. 8. This result is in agreement with the theoretical Eq. (7).
Electrophoretic light scattering (ELS) is primarily used for characterizing the surface charges of colloidal particles like macromolecules or synthetic polymers (ex. polystyrene [6] ) in liquid media in an electric field. In addition to information about surface charges, ELS can also measure the particle size of proteins [7] and determine the zeta potential distribution.
ELS is useful for characterizing information about the surface of proteins. Ware and Flygare (1971) demonstrated that electrophoretic techniques can be combined with laser beat spectroscopy in order to simultaneously determine the electrophoretic mobility and diffusion coefficient of bovine serum albumin. [8] The width of a Doppler shifted spectrum of light that is scattered from a solution of macromolecules is proportional to the diffusion coefficient. [9] The Doppler shift is proportional to the electrophoretic mobility of a macromolecule. [10] From studies that have applied this method to poly (L-lysine), ELS is believed to monitor fluctuation mobilities in the presence of solvents with varying salt concentrations. [11] It has also been shown that electrophoretic mobility data can be converted to zeta potential values, which enables the determination of the isoelectric point of proteins and the number of electrokinetic charges on the surface. [12]
Other biological macromolecules that can be analyzed with ELS include polysaccharides. pKa values of chitosans can be calculated from the dependency of electrophoretic mobility values on pH and charge density. [13] Like proteins, the size and zeta potential of chitosans can be determined through ELS. [14]
ELS has also been applied to nucleic acids and viruses. The technique can be extended to measure electrophoretic mobilities of large bacteria molecules at low ionic strengths. [15]
ELS has been used to characterize the polydispersity, nanodispersity, and stability of single-walled carbon nanotubes in an aqueous environment with surfactants.[ citation needed ] The technique can be used in combination with dynamic light scattering to measure these properties of nanotubes in many different solvents.
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is presented as being based on just two postulates:
Compton scattering is the quantum theory of high frequency photons scattering following an interaction with a charged particle, usually an electron. Specifically, when the photon hits electrons, it releases loosely bound electrons from the outer valence shells of atoms or molecules.
Millimeter-wave cloud radars, also denominated cloud radars, are radar systems designed to monitor clouds with operating frequencies between 24 and 110 GHz. Accordingly, their wavelengths range from 1 mm to 1.11 cm, about ten times shorter than those used in conventional S band radars such as NEXRAD.
Time of flight (ToF) is the measurement of the time taken by an object, particle or wave to travel a distance through a medium. This information can then be used to measure velocity or path length, or as a way to learn about the particle or medium's properties. The traveling object may be detected directly or indirectly. Time of flight technology has found valuable applications in the monitoring and characterization of material and biomaterials, hydrogels included.
The relativistic Doppler effect is the change in frequency, wavelength and amplitude of light, caused by the relative motion of the source and the observer, when taking into account effects described by the special theory of relativity.
In physics, Raman scattering or the Raman effect is the inelastic scattering of photons by matter, meaning that there is both an exchange of energy and a change in the light's direction. Typically this effect involves vibrational energy being gained by a molecule as incident photons from a visible laser are shifted to lower energy. This is called normal Stokes-Raman scattering.
In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility.
Laser Doppler velocimetry, also known as laser Doppler anemometry, is the technique of using the Doppler shift in a laser beam to measure the velocity in transparent or semi-transparent fluid flows or the linear or vibratory motion of opaque, reflecting surfaces. The measurement with laser Doppler anemometry is absolute and linear with velocity and requires no pre-calibration.
Zeta potential is the electrical potential at the slipping plane. This plane is the interface which separates mobile fluid from fluid that remains attached to the surface.
In electrical engineering, homodyne detection is a method of extracting information encoded as modulation of the phase and/or frequency of an oscillating signal, by comparing that signal with a standard oscillation that would be identical to the signal if it carried null information. "Homodyne" signifies a single frequency, in contrast to the dual frequencies employed in heterodyne detection.
An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves. They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control. A piezoelectric transducer is attached to a material such as glass. An oscillating electric signal drives the transducer to vibrate, which creates sound waves in the material. These can be thought of as moving periodic planes of expansion and compression that change the index of refraction. Incoming light scatters off the resulting periodic index modulation and interference occurs similar to Bragg diffraction. The interaction can be thought of as a three-wave mixing process resulting in sum-frequency generation or difference-frequency generation between phonons and photons.
The Ives–Stilwell experiment tested the contribution of relativistic time dilation to the Doppler shift of light. The result was in agreement with the formula for the transverse Doppler effect and was the first direct, quantitative confirmation of the time dilation factor. Since then many Ives–Stilwell type experiments have been performed with increased precision. Together with the Michelson–Morley and Kennedy–Thorndike experiments it forms one of the fundamental tests of special relativity theory. Other tests confirming the relativistic Doppler effect are the Mössbauer rotor experiment and modern Ives–Stilwell experiments.
Planar Doppler Velocimetry (PDV), also referred to as Doppler Global Velocimetry (DGV), determines flow velocity across a plane by measuring the Doppler shift in frequency of light scattered by particles contained in the flow. The Doppler shift, Δfd, is related to the fluid velocity. The relatively small frequency shift is discriminated using an atomic or molecular vapor filter. This approach is conceptually similar to what is now known as Filtered Rayleigh Scattering.
Optical heterodyne detection is a method of extracting information encoded as modulation of the phase, frequency or both of electromagnetic radiation in the wavelength band of visible or infrared light. The light signal is compared with standard or reference light from a "local oscillator" (LO) that would have a fixed offset in frequency and phase from the signal if the latter carried null information. "Heterodyne" signifies more than one frequency, in contrast to the single frequency employed in homodyne detection.
A laser Doppler vibrometer (LDV) is a scientific instrument that is used to make non-contact vibration measurements of a surface. The laser beam from the LDV is directed at the surface of interest, and the vibration amplitude and frequency are extracted from the Doppler shift of the reflected laser beam frequency due to the motion of the surface. The output of an LDV is generally a continuous analog voltage that is directly proportional to the target velocity component along the direction of the laser beam.
The photoacoustic Doppler effect is a type of Doppler effect that occurs when an intensity modulated light wave induces a photoacoustic wave on moving particles with a specific frequency. The observed frequency shift is a good indicator of the velocity of the illuminated moving particles. A potential biomedical application is measuring blood flow.
Photon Doppler velocimetry (PDV) is a one-dimensional Fourier transform analysis of a heterodyne laser interferometry, used in the shock physics community to measure velocities in dynamic experiments with high temporal precision. PDV was developed at Lawrence Livermore National Laboratory by Oliver Strand. In recent years PDV has achieved popularity in the shock physics community as an adjunct or replacement for velocity interferometer system for any reflector (VISAR), another time-resolved velocity interferometry system. Modern data acquisition technology and off-the-shelf optical telecommunications devices now enable the assembly of PDV systems within reasonable budgets.
A laser surface velocimeter (LSV) is a non-contact optical speed sensor measuring velocity and length on moving surfaces. Laser surface velocimeters use the laser Doppler principle to evaluate the laser light scattered back from a moving object. They are widely used for process and quality control in industrial production processes.
Optical coherence tomography (OCT) is a technique that displays images of the tissue by using the backscattered light.
Nonlinear frictiophoresis is the unidirectional drift of a particle in a medium caused by periodic driving force with zero mean. The effect is possible due to nonlinear dependence of the friction-drag force on the particle's velocity. It was discovered theoretically., and is mainly known as nonlinear electrofrictiophoresis . At first glance, a periodic driving force with zero mean is able to entrain a particle into an oscillating movement without unidirectional drift, because integral momentum provided to the particle by the force is zero. The possibility of unidirectional drift can be recognized if one takes into account that the particle itself loses momentum through transferring it further to the medium it moves in/at. If the friction is nonlinear, then it may so happen that the momentum loss during movement in one direction does not equal to that in the opposite direction and this causes unidirectional drift. For this to happen, the driving force time-dependence must be more complicated than it is in a single sinusoidal harmonic.
(1) Surfactant Science Series, Consulting Editor Martin J. Schick Consultant New York, Vol. 76 Electrical Phenomena at Interfaces Second Edition, Fundamentals, Measurements and Applications, Second Edition, Revised and Expanded. Ed by Hiroyuki Ohshima, Kunio Furusawa. 1998. K. Oka and K. Furusawa, Chapter 8 Electrophresis, p. 152 - 223. Marcel Dekker, Inc,
(7) B.R. Ware and D.D. Haas, in Fast Method in Physical Biochemistry and Cell Biology. (R.I. Sha'afi and S.M. Fernandez, Eds), Elsevier, New York, 1983, Chap. 8.
(9) Ware, B.R; Flygare, W.H (1972). "Light scattering in mixtures of BSA, BSA dimers, and fibrinogen under the influence of electric fields". Journal of Colloid and Interface Science. Elsevier BV. 39 (3): 670–675. doi:10.1016/0021-9797(72)90075-6. ISSN 0021-9797.
(10) Josefowicz, J.; Hallett, F. R. (1975-03-01). "Homodyne Electrophoretic Light Scattering of Polystyrene Spheres by Laser Cross-Beam Intensity Correlation". Applied Optics. The Optical Society. 14 (3): 740. doi:10.1364/ao.14.000740. ISSN 0003-6935.
(11) K. Oka, W. Otani, K. Kameyama, M. Kidai, and T. Takagi, Appl. Theor. Electrophor. 1: 273-278 (1990).
(12) K. Oka, W. Otani, Y. Kubo, Y. Zasu, and M. Akagi, U.S. Patent Appl. 465, 186: Jpn. Patent H7-5227 (1995).
(16) S. Mori and H. Okamoto, Flotation 28: 1 (1980). (in Japanese): Fusen 28(3): 117 (1980).
(17) M. Smoluchowski, in Handbuch der Electrizitat und des Magnetismus. (L. Greatz. Ed). Barth, Leripzig, 1921, pp. 379.
(18) P. White, Phil. Mag. S 7, 23, No. 155 (1937).
(19) S. Komagat, Res. Electrotech. Lab. (Jpn) 348, March 1933.
(20) Y. Fukui, S. Yuu and K. Ushiki, Power Technol. 54: 165 (1988).