Elisa Riedo

Last updated
Elisa Riedo
Born
Como, Italy
Alma mater Universita' degli Studi di Milano
Known for thermal scanning probe lithography (tSPL), nanofabrication, nanomechanics, epitaxial graphene, diamene
Scientific career
FieldsNanotechnology, Physics, Materials, Nanofabrication
Institutions Georgia Tech, New York University https://engineering.nyu.edu
Website https://engineering.nyu.edu/faculty/elisa-riedo

Elisa Riedo is a physicist and researcher known for her contributions in condensed matter physics, nanotechnology and engineering. She is the Herman F. Mark Chair Professor of Chemical and Biomolecular Engineering [1] at the New York University Tandon School of Engineering [2] and the director of the picoForce Lab. [3]

Contents

Academic career

Professor Elisa Riedo received her B.S. in physics Summa cum Laude from the University of Milano, Italy, in 1995.She received her Ph.D. in physics in a joint program between the University of Milano and the European Synchrotron Radiation Facility in Grenoble, France in 2000. She worked is some of the major research centers in Europe, including ESRF, CERN (Switzerland), CoreCom (Politecnico of Milan and Pirelli) (Italy), Forshungzentrum of Jülich (Germany), and TASC – INFM labs, Trieste (Italy). She then worked at the École Polytechnique Fédérale de Lausanne (EPFL) as post doctoral fellow. In 2003 she was hired as assistant professor at the Georgia Institute of Technology [4] in the School of Physics, where she was promoted to associate professor with tenure in 2009 and to full professor in 2015. From 2016 to summer 2018, she worked as Nanoscience Professor at the CUNY Advanced Science Research Center (ASRC), [5] as well as a physics professor at the City College of New York. Since 2018, she is a professor at the NYU Tandon School of Engineering in the department of Chemical and Biomolecular Engineering, where she is the director of the picoForce Lab. [6]

Research

Her research is focused on understanding materials and physical processes at the nanoscale. Her lab is focused on developing new scanning probe microscopy based methods to study and fabricate materials and solid/liquid interfaces at the nanoscale. Highlights from her research are the invention of thermochemical nanolithography, the discovery of the exotic viscoelasticity of water at the interface with a solid surface, and the development of new methods to study materials’ elasticity and friction with sub-nm resolution. Thermochemical nanolithography, TCNL, also called thermochemical scanning probe lithography (tcSPL) or thermal scanning probe lithography (tSPL) was invented in Riedo's laboratory at Georgia Tech in 2007 [32, 4] and further developed at IBM. [7] tSPL uses a localized source of heat to activate chemical reactions at the nano-down-to the atomic scale. tSPL has a variety of applications in biology, nanomedicine, nanoelectronics, and nanophotonics.

Riedo's research is also well-known for its contributions in nanomechanics, in particular for the development of novel atomic force microscopy methods to study the elastic properties of nanomaterials (modulated nanoindentation [8] (MoNI) and A-indentation), and the first observation of the exceptional mechanical properties of diamene, [9] single layer diamond, obtained from pressurizing epitaxial two-layer graphene.

In 2013, Riedo was elected Fellow of the American Physical Society for her atomic force microscopy studies of nanoscale friction, liquid structure and nanotube elasticity, and the invention of thermochemical nanolithography. [10] [11]

Honors and awards

[12] [13] [14] [15] [16] [17] [18] [19] [20] [21]

Related Research Articles

<span class="mw-page-title-main">Carbon nanotube</span> Allotropes of carbon with a cylindrical nanostructure

A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometer range (nanoscale). They are one of the allotropes of carbon.

<span class="mw-page-title-main">Nanotechnology</span> Field of science involving control of matter on atomic and (supra)molecular scales

Nanotechnology was defined by the National Nanotechnology Initiative as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter. The definition of nanotechnology is inclusive of all types of research and technologies that deal with these special properties. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size. An earlier description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology.

<span class="mw-page-title-main">Nanoelectromechanical systems</span> Class of devices for nanoscale functionality

Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and mechanical functionality on the nanoscale. NEMS form the next logical miniaturization step from so-called microelectromechanical systems, or MEMS devices. NEMS typically integrate transistor-like nanoelectronics with mechanical actuators, pumps, or motors, and may thereby form physical, biological, and chemical sensors. The name derives from typical device dimensions in the nanometer range, leading to low mass, high mechanical resonance frequencies, potentially large quantum mechanical effects such as zero point motion, and a high surface-to-volume ratio useful for surface-based sensing mechanisms. Applications include accelerometers and sensors to detect chemical substances in the air.

Nanolithography (NL) is a growing field of techniques within nanotechnology dealing with the engineering of nanometer-scale structures on various materials.

Phaedon Avouris is a Greek chemical physicist and materials scientist. He is an IBM Fellow and was formerly the group leader for Nanometer Scale Science and Technology at the Thomas J. Watson Research Center in Yorktown Heights, New York.

<span class="mw-page-title-main">Dip-pen nanolithography</span> Scanning probe lithographic technique

Dip pen nanolithography (DPN) is a scanning probe lithography technique where an atomic force microscope (AFM) tip is used to create patterns directly on a range of substances with a variety of inks. A common example of this technique is exemplified by the use of alkane thiolates to imprint onto a gold surface. This technique allows surface patterning on scales of under 100 nanometers. DPN is the nanotechnology analog of the dip pen, where the tip of an atomic force microscope cantilever acts as a "pen," which is coated with a chemical compound or mixture acting as an "ink," and put in contact with a substrate, the "paper."

<span class="mw-page-title-main">Nanochemistry</span> Combination of chemistry and nanoscience

Nanochemistry is an emerging sub-discipline of the chemical and material sciences that deals with the development of new methods for creating nanoscale materials. The term "nanochemistry" was first used by Ozin in 1992 as 'the uses of chemical synthesis to reproducibly afford nanomaterials from the atom "up", contrary to the nanoengineering and nanophysics approach that operates from the bulk "down"'. Nanochemistry focuses on solid-state chemistry that emphasizes synthesis of building blocks that are dependent on size, surface, shape, and defect properties, rather than the actual production of matter. Atomic and molecular properties mainly deal with the degrees of freedom of atoms in the periodic table. However, nanochemistry introduced other degrees of freedom that controls material's behaviors by transformation into solutions. Nanoscale objects exhibit novel material properties, largely as a consequence of their finite small size. Several chemical modifications on nanometer-scaled structures approve size dependent effects.

<span class="mw-page-title-main">Charles M. Lieber</span> Jewish-American chemist

Charles M. Lieber is an American chemist, a pioneer in nanoscience and nanotechnology, and a convicted felon. In 2011, Lieber was named the leading chemist in the world for the decade 2000–2010 by Thomson Reuters, based on the impact of his scientific publications. He is known for his contributions to the synthesis, assembly and characterization of nanoscale materials and nanodevices, the application of nanoelectronic devices in biology, and as a mentor to numerous leaders in nanoscience.

Scanning probe lithography (SPL) describes a set of nanolithographic methods to pattern material on the nanoscale using scanning probes. It is a direct-write, mask-less approach which bypasses the diffraction limit and can reach resolutions below 10 nm. It is considered an alternative lithographic technology often used in academic and research environments. The term scanning probe lithography was coined after the first patterning experiments with scanning probe microscopes (SPM) in the late 1980s.

<span class="mw-page-title-main">Nanobatteries</span> Type of battery

Nanobatteries are fabricated batteries employing technology at the nanoscale, particles that measure less than 100 nanometers or 10−7 meters. These batteries may be nano in size or may use nanotechnology in a macro scale battery. Nanoscale batteries can be combined to function as a macrobattery such as within a nanopore battery.

The following outline is provided as an overview of and topical guide to nanotechnology:

Plasmonic nanolithography is a nanolithographic process that utilizes surface plasmon excitations such as surface plasmon polaritons (SPPs) to fabricate nanoscale structures. SPPs, which are surface waves that propagate in between planar dielectric-metal layers in the optical regime, can bypass the diffraction limit on the optical resolution that acts as a bottleneck for conventional photolithography.

<span class="mw-page-title-main">Scanning thermal microscopy</span>

Scanning thermal microscopy (SThM) is a type of scanning probe microscopy that maps the local temperature and thermal conductivity of an interface. The probe in a scanning thermal microscope is sensitive to local temperatures – providing a nano-scale thermometer. Thermal measurements at the nanometer scale are of both scientific and industrial interest. The technique was invented by Clayton C. Williams and H. Kumar Wickramasinghe in 1986.

<span class="mw-page-title-main">Walter de Heer</span>

Walter Alexander "Walt" de Heer is a Dutch physicist and nanoscience researcher known for discoveries in the electronic shell structure of metal clusters, magnetism in transition metal clusters, field emission and ballistic conduction in carbon nanotubes, and graphene-based electronics.

<span class="mw-page-title-main">Thermal scanning probe lithography</span>

Thermal scanning probe lithography (t-SPL) is a form of scanning probe lithography (SPL) whereby material is structured on the nanoscale using scanning probes, primarily through the application of thermal energy.

Thermochemical nanolithography (TCNL) or thermochemical scanning probe lithography (tc-SPL) is a scanning probe microscopy-based nanolithography technique which triggers thermally activated chemical reactions to change the chemical functionality or the phase of surfaces. Chemical changes can be written very quickly through rapid probe scanning, since no mass is transferred from the tip to the surface, and writing speed is limited only by the heat transfer rate. TCNL was invented in 2007 by a group at the Georgia Institute of Technology. Riedo and collaborators demonstrated that TCNL can produce local chemical changes with feature sizes down to 12 nm at scan speeds up to 1 mm/s.

Alan T. Charlie Johnson is an American physicist, professor in physics and astronomy at the University of Pennsylvania, and was the director of the Nano/Bio Interface Center at the University of Pennsylvania (2014-2017).

A rapidly increasing list of graphene production techniques have been developed to enable graphene's use in commercial applications.

<span class="mw-page-title-main">Multi-tip scanning tunneling microscopy</span>

Multi-tip scanning tunneling microscopy extends scanning tunneling microscopy (STM) from imaging to dedicated electrical measurements at the nanoscale like a ″multimeter at the nanoscale″. In materials science, nanoscience, and nanotechnology, it is desirable to measure electrical properties at a particular position of the sample. For this purpose, multi-tip STMs in which several tips are operated independently have been developed. Apart from imaging the sample, the tips of a multi-tip STM are used to form contacts to the sample at desired locations and to perform local electrical measurements.

This glossary of nanotechnology is a list of definitions of terms and concepts relevant to nanotechnology, its sub-disciplines, and related fields.

References

  1. "Elisa Riedo". engineering.nyu.edu. Retrieved 2023-02-17.
  2. "Home | NYU Tandon School of Engineering". engineering.nyu.edu. Retrieved 2023-02-17.
  3. "Elisa Riedo". Picoforce Lab. Archived from the original on 2016-10-02. Retrieved 2020-07-31.
  4. "picoForce Laboratory". riedo.gatech.edu. Archived from the original on 2011-10-18. Retrieved 2020-07-31.
  5. "Elisa Riedo newest faculty member with CUNY ASRC's Nanoscience Initiative". The Graduate Center, City University of New York. 2015-07-01. Archived from the original on 2020-07-20. Retrieved 2020-07-31.
  6. "Elisa Riedo - Picoforce Lab". picoforce Copy. Retrieved 2023-02-18.
  7. Knoll, Armin; Chaaban, Jana; Hendricks, Nicholas; Cagin, Emine; Nicollier, Philippe Marc; Wolf, Heiko; Widmer, Daniel; Drechsler, Ute (2022-05-30). "Fully Automated Thermal Scanning Probe Lithography for FET Batch Fabrication".{{cite journal}}: Cite journal requires |journal= (help)
  8. Cellini, Filippo; Gao, Yang; Riedo, Elisa (2019-03-11). "Å-Indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures". Scientific Reports. 9 (1): 4075. arXiv: 1901.09059 . Bibcode:2019NatSR...9.4075C. doi:10.1038/s41598-019-40636-0. ISSN   2045-2322. PMC   6411981 . PMID   30858472.
  9. Gao, Yang; Cao, Tengfei; Cellini, Filippo; Berger, Claire; de Heer, Walter A.; Tosatti, Erio; Riedo, Elisa; Bongiorno, Angelo (February 2018). "Ultrahard carbon film from epitaxial two-layer graphene". Nature Nanotechnology. 13 (2): 133–138. arXiv: 1801.00520 . doi:10.1038/s41565-017-0023-9. ISSN   1748-3395. PMID   29255290. S2CID   24691099.
  10. "Elisa Riedo". NYU Tandon School of Engineering. Archived from the original on 2019-05-13. Retrieved 2020-07-31.
  11. "Congratulations APS Fellows and NSF CAREER Proposals!". School of Physics. 2013-12-10. Archived from the original on 2016-12-23. Retrieved 2020-07-31.
  12. I. Palaci, S. Fedrigo, H. Brune, C. Klinke, M. Chen and E. Riedo (2005). ""Radial Elasticity of Multiwalled Carbon Nanotubes"". Physical Review Letters. 94 (17): 175502. arXiv: 1201.5501 . Bibcode:2005PhRvL..94q5502P. doi:10.1103/PhysRevLett.94.175502. PMID   15904310. S2CID   8090975.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. J.H. Song and X.D. Wang and Z.L. Wang, and E. Riedo. ""Elastic Property of Vertically Aligned Nanowires/Nanotubes"".{{cite journal}}: Cite journal requires |journal= (help)
  14. T.-D. Li, J. Gao, R. Szoszkiewicz, U. Landman and E. Riedo (2007). ""Structured and viscous water in subnanometer gaps"". Physical Review B. 75 (11): 115415. Bibcode:2007PhRvB..75k5415L. doi:10.1103/PhysRevB.75.115415. hdl: 1853/45725 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. Z. Q. Wei, D. B. Wang, S. Kim, S. Y. Kim, Y. K. Hu, M. Yakes, A. R. Laracuente, Z. T. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo (2010). ""Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics,"". Science. 328 (5984): 1373–6. Bibcode:2010Sci...328.1373W. doi:10.1126/science.1188119. PMID   20538944. S2CID   9672782.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. Suenne Kim, Si Zhou, Yike Hu, Muge Acik, Yves J. Chabal, Claire Berger, Walt de Heer, Angelo Bongiorno, and Elisa Riedo. ""Room Temperature Metastability of Multilayer Epitaxial Graphene Oxide"".{{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  17. Ricardo Garcia, Armin Knoll, and Elisa Riedo (2014). ""Advanced Scanning Probe Lithography"". Nature Nanotechnology. 9 (8): 577–587. arXiv: 1505.01260 . Bibcode:2014NatNa...9..577G. doi:10.1038/nnano.2014.157. PMID   25091447. S2CID   205450948.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. Y. Gao, S. Zhou, S. Kim, H.-C. Chiu, D. Nélias, C. Berger, W. de Heer, L. Polloni, R. Sordan, A. Bongiorno and E. Riedo* (2015). ""Elastic coupling between layers in two-dimensional materials"" (PDF). Nature Materials. 14 (7): 714–720. Bibcode:2015NatMa..14..714G. doi:10.1038/nmat4322. PMID   26076304.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. Albisetti, D. Petti, M. Pancaldi, M. Madami, S. Tacchi, J. Curtis, W.P. King, A. Papp, G. Csaba, W.Porod, P. Vavassori, E. Riedo. "R. Bertacco, "Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography"".{{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  20. Gao, Yang; Cao, Tengfei; Cellini, Filippo; Berger, Claire; de Heer, Walter A.; Tosatti, Erio; Riedo, Elisa; Bongiorno, Angelo (February 2018). "Ultrahard carbon film from epitaxial two-layer graphene". Nature Nanotechnology. 13 (2): 133–138. arXiv: 1801.00520 . doi:10.1038/s41565-017-0023-9. PMID   29255290. S2CID   24691099.
  21. Zheng, Xiaorui; Calò, Annalisa; Albisetti, Edoardo; Liu, Xiangyu; Alharbi, Abdullah Sanad M.; Arefe, Ghidewon; Liu, Xiaochi; Spieser, Martin; Yoo, Won Jong; Taniguchi, Takashi; Watanabe, Kenji; Aruta, Carmela; Ciarrocchi, Alberto; Kis, Andras; Lee, Brian S.; Lipson, Michal; Hone, James; Shahrjerdi, Davood; Riedo, Elisa (January 2019). "Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography". Nature Electronics. 2 (1): 17–25. doi:10.1038/s41928-018-0191-0. hdl: 11311/1120544 . S2CID   139840293.