Embodied cognitive science is an interdisciplinary field of research, the aim of which is to explain the mechanisms underlying intelligent behavior. It comprises three main methodologies: the modeling of psychological and biological systems in a holistic manner that considers the mind and body as a single entity; the formation of a common set of general principles of intelligent behavior; and the experimental use of robotic agents in controlled environments.
Embodied cognitive science borrows heavily from embodied philosophy and the related research fields of cognitive science, psychology, neuroscience and artificial intelligence. Contributors to the field include: [1] [2] [3] [4]
In 1950, Alan Turing proposed that a machine may need a human-like body to think and speak:
It can also be maintained that it is best to provide the machine with the best sense organs that money can buy, and then teach it to understand and speak English. That process could follow the normal teaching of a child. Things would be pointed out and named, etc. Again, I do not know what the right answer is, but I think both approaches should be tried. [5]
Embodied cognitive science is an alternative theory to cognition in which it minimizes appeals to computational theory of mind in favor of greater emphasis on how an organism's body determines how and what it thinks. Traditional cognitive theory is based mainly around symbol manipulation, in which certain inputs are fed into a processing unit that produces an output. These inputs follow certain rules of syntax, from which the processing unit finds semantic meaning. Thus, an appropriate output is produced. For example, a human's sensory organs are its input devices, and the stimuli obtained from the external environment are fed into the nervous system which serves as the processing unit. From here, the nervous system is able to read the sensory information because it follows a syntactic structure, thus an output is created. This output then creates bodily motions and brings forth behavior and cognition. Of particular note is that cognition is sealed away in the brain, meaning that mental cognition is cut off from the external world and is only possible by the input of sensory information.
Embodied cognitive science differs from the traditionalist approach in that it denies the input-output system. This is chiefly due to the problems presented by the Homunculus argument, which concluded that semantic meaning could not be derived from symbols without some kind of inner interpretation. If some little man in a person's head interpreted incoming symbols, then who would interpret the little man's inputs? Because of the specter of an infinite regress, the traditionalist model began to seem less plausible. Thus, embodied cognitive science aims to avoid this problem by defining cognition in three ways. [6] : 340
The first aspect of embodied cognition examines the role of the physical body, particularly how its properties affect its ability to think. This part attempts to overcome the symbol manipulation component that is a feature of the traditionalist model. Depth perception, for instance, can be better explained under the embodied approach due to the sheer complexity of the action. Depth perception requires that the brain detect the disparate retinal images obtained by the distance of the two eyes. In addition, body and head cues complicate this further. When the head is turned in a given direction, objects in the foreground will appear to move against objects in the background. From this, it is said that some kind of visual processing is occurring without the need of any kind of symbol manipulation. This is because the objects appearing to move the foreground are simply appearing to move. This observation concludes then that depth can be perceived with no intermediate symbol manipulation necessary.
A more poignant example exists through examining auditory perception. Generally speaking the greater the distance between the ears, the greater the possible auditory acuity. Also relevant is the amount of density in between the ears, for the strength of the frequency wave alters as it passes through a given medium. The brain's auditory system takes these factors into account as it process information, but again without any need for a symbolic manipulation system. This is because the distance between the ears for example does not need symbols to represent it. The distance itself creates the necessary opportunity for greater auditory acuity. The amount of density between the ears is similar, in that it is the actual amount itself that simply forms the opportunity for frequency alteration. Thus under consideration of the physical properties of the body, a symbolic system is unnecessary and an unhelpful metaphor.
The second aspect draws heavily from George Lakoff's and Mark Johnson's work on concepts. They argued that humans use metaphors whenever possible to better explain their external world. Humans also have a basic stock of concepts in which other concepts can be derived from. These basic concepts include spatial orientations such as up, down, front, and back. Humans can understand what these concepts mean because they can directly experience them from their own bodies. For example, because human movement revolves around standing erect and moving the body in an up-down motion, humans innately have these concepts of up and down. Lakoff and Johnson contend this is similar with other spatial orientations such as front and back too. As mentioned earlier, these basic stocks of spatial concepts are the basis in which other concepts are constructed. Happy and sad for instance are seen now as being up or down respectively. When someone says they are feeling down, what they are really saying is that they feel sad for example. Thus the point here is that true understanding of these concepts is contingent on whether one can have an understanding of the human body. So the argument goes that if one lacked a human body, they could not possibly know what up or down could mean, or how it could relate to emotional states.
[I]magine a spherical being living outside of any gravitational field, with no knowledge or imagination of any other kind of experience. What could UP possibly mean to such a being? [6] : 342
While this does not mean that such beings would be incapable of expressing emotions in other words, it does mean that they would express emotions differently from humans. Human concepts of happiness and sadness would be different because human would have different bodies. So then an organism's body directly affects how it can think, because it uses metaphors related to its body as the basis of concepts.
A third component of the embodied approach looks at how agents use their immediate environment in cognitive processing. Meaning, the local environment is seen as an actual extension of the body's cognitive process. The example of a personal digital assistant (PDA) is used to better imagine this. Echoing functionalism (philosophy of mind), this point claims that mental states are individuated by their role in a much larger system. So under this premise, the information on a PDA is similar to the information stored in the brain. So then if one thinks information in the brain constitutes mental states, then it must follow that information in the PDA is a cognitive state too. Consider also the role of pen and paper in a complex multiplication problem. The pen and paper are so involved in the cognitive process of solving the problem that it seems ridiculous to say they are somehow different from the process, in very much the same way the PDA is used for information like the brain. Another example examines how humans control and manipulate their environment so that cognitive tasks can be better performed. Leaving one's car keys in a familiar place so they aren't missed for instance, or using landmarks to navigate in an unfamiliar city. Thus, humans incorporate aspects of their environment to aid in their cognitive functioning.
The value of the embodiment approach in the context of cognitive science is perhaps best [ citation needed ] explained by Andy Clark. [7] : 345–351 He makes the claim that the brain alone should not be the single focus for the scientific study of cognition
It is increasingly clear that, in a wide variety of cases, the individual brain should not be the sole locus of cognitive scientific interest. Cognition is not a phenomenon that can be successfully studied while marginalizing the roles of body, world and action. [7] : 350
The following examples used by Clark will better illustrate how embodied thinking is becoming apparent [ citation needed ] in scientific thinking.
Thunnus , or tuna, long baffled conventional biologists with its incredible abilities to accelerate quickly and attain great speeds. A biological examination of the tuna shows that it should not be capable of such feats. However, an answer can be found when taking the tuna's embodied state into account. The bluefin tuna is able to take advantage of and exploit its local environment by finding naturally occurring currents to increase its speed. The tuna also uses its own physical body for this end as well, by utilizing its tailfin to create the necessary vortices and pressure so it can accelerate and maintain high speeds. Thus, the bluefin tuna is actively using its local environment for its own ends through the attributes of its physical body.
Clark uses the example of the hopping robot constructed by Raibert and Hodgins to demonstrate further the value of the embodiment paradigm. These robots were essentially vertical cylinders with a single hopping foot. The challenge of managing the robot's behavior can be daunting because in addition to the intricacies of the program itself, there were also the mechanical matters regarding how the foot ought to be constructed so that it could hop. An embodied approach makes it easier to see that in order for this robot to function, it must be able to exploit its system to the fullest. That is, the robot's systems should be seen as having dynamic characteristics as opposed to the traditional view that it is merely a command center that just executes actions.
Clark distinguishes between two kinds of vision, animate and pure vision. Pure vision is an idea that is typically associated with classical artificial intelligence, in which vision is used to create a rich world model so that thought and reason can be used to fully explore the inner model. In other words, pure vision passively creates the external perceivable world so that the faculties of reason can be better used introspectively. Animate vision, by contrast, sees vision as the means by which real-time action can commence. Animate vision is then more of a vehicle by which visual information is obtained so that actions can be undertaken. Clark points to animate vision as an example of embodiment, because it uses both biological and local environment cues to create an active intelligent process. Consider the Clark's example of going to the drugstore to buy some Kodak film. In one's mind, one is familiar with the Kodak logo and its trademark gold color. Thus, one uses incoming visual stimuli to navigate around the drugstore until one finds the film. Therefore, vision should not be seen as a passive system but rather an active retrieval device that intelligently uses sensory information and local environmental cues to perform specific real-world actions.
Inspired by the work of the American psychologist James J. Gibson, this next example emphasizes the importance of action-relevant sensory information, bodily movement, and local environment cues. These three concepts are unified by the concept of affordances, which are possibilities of action provided by the physical world to a given agent. These are in turn determined by the agent's physical body, capacities, and the overall action-related properties of the local environment as well. Clark uses the example of an outfielder in baseball to better illustrate the concept of affordance. Traditional computational models would claim that an outfielder attempting to catch a fly-ball can be calculated by variables such as the running speed of the outfielder and the arc of the baseball. However, Gibson's work shows that a simpler method is possible. The outfielder can catch the ball so long as they adjust their running speed so that the ball continually moves in a straight line in their field of vision. Note that this strategy uses various affordances that are contingent upon the success of the outfielder, including their physical body composition, the environment of the baseball field, and the sensory information obtained by the outfielder.
Clark points out here that the latter strategy of catching the ball as opposed to the former has significant implications for perception. The affordance approach proves to be non-linear because it relies upon spontaneous real-time adjustments. On the contrary, the former method of computing the arc of the ball is linear as it follows a sequence of perception, calculation and performing action. Thus, the affordance approach challenges the traditional view of perception by arguing against the notion that computation and introspection are necessary. Instead, it ought to be replaced with the idea that perception constitutes a continuous equilibrium of action adjustment between the agent and the world. Ultimately Clark does not expressly claim this is certain but he does observe the affordance approach can explain adaptive response satisfactorily. [7] : 346 This is because they utilize environmental cues made possible by perceptual information that is actively used in the real-time by the agent.
In the formation of general principles of intelligent behavior, Pfeifer intended to be contrary to older principles given in traditional artificial intelligence. The most dramatic difference is that the principles are applicable only to situated robotic agents in the real world, a domain where traditional artificial intelligence showed the least promise.
Principle of cheap design and redundancy: Pfeifer realized that implicit assumptions made by engineers often substantially influence a control architecture's complexity. [8] : 436 This insight is reflected in discussions of the scalability problem in robotics. The internal processing needed for some bad architectures can grow out of proportion to new tasks needed of an agent.
One of the primary reasons for scalability problems is that the amount of programming and knowledge engineering that the robot designers have to perform grows very rapidly with the complexity of the robot's tasks. There is mounting evidence that pre-programming cannot be the solution to the scalability problem ... The problem is that programmers introduce too many hidden assumptions in the robot's code. [9]
The proposed solutions are to have the agent exploit the inherent physics of its environment, to exploit the constraints of its niche, and to have agent morphology based on parsimony and the principle of Redundancy. Redundancy reflects the desire for the error-correction of signals afforded by duplicating like channels. Additionally, it reflects the desire to exploit the associations between sensory modalities. (See redundant modalities). In terms of design, this implies that redundancy should be introduced with respect not only to one sensory modality but to several. [8] : 448 It has been suggested that the fusion and transfer of knowledge between modalities can be the basis of reducing the size of the sense data taken from the real world. [10] This again addresses the scalability problem.
Principle of parallel, loosely-coupled processes: An alternative to hierarchical methods of knowledge and action selection. This design principle differs most importantly from the Sense-Think-Act cycle of traditional AI. Since it does not involve this famous cycle, it is not affected by the frame problem.
Principle of sensory-motor coordination: Ideally, internal mechanisms in an agent should give rise to things like memory and choice-making in an emergent fashion, rather than being prescriptively programmed from the beginning. These kinds of things are allowed to emerge as the agent interacts with the environment. The motto is, build fewer assumptions into the agent's controller now, so that learning can be more robust and idiosyncratic in the future.
Principle of ecological balance: This is more a theory than a principle, but its implications are widespread. Its claim is that the internal processing of an agent cannot be made more complex unless there is a corresponding increase in complexity of the motors, limbs, and sensors of the agent. In other words, the extra complexity added to the brain of a simple robot will not create any discernible change in its behavior. The robot's morphology must already contain the complexity in itself to allow enough "breathing room" for more internal processing to develop.
Value principle: This was the architecture developed in the Darwin III robot of Gerald Edelman. It relies heavily on connectionism.
A traditionalist may argue that objects may be used to aid in cognitive processes, but this does not mean they are part of a cognitive system. [6] : 343 Eyeglasses are used to aid in the visual process, but to say they are a part of a larger system would completely redefine what is meant by a visual system. However, supporters of the embodied approach could make the case that if objects in the environment play the functional role of mental states, then the items themselves should not be counted among the mental states.
Lars Ludwig explores mind extension further outlining its role in technology. He proposes a cognitive theory of 'extended artificial memory', which represents a theoretical update and extension of the memory theories of Richard Semon. [11]
Cognitive science is the interdisciplinary, scientific study of the mind and its processes with input from linguistics, psychology, neuroscience, philosophy, computer science/artificial intelligence, and anthropology. It examines the nature, the tasks, and the functions of cognition. Cognitive scientists study intelligence and behavior, with a focus on how nervous systems represent, process, and transform information. Mental faculties of concern to cognitive scientists include language, perception, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as linguistics, psychology, artificial intelligence, philosophy, neuroscience, and anthropology. The typical analysis of cognitive science spans many levels of organization, from learning and decision to logic and planning; from neural circuitry to modular brain organization. One of the fundamental concepts of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."
Perception is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment. All perception involves signals that go through the nervous system, which in turn result from physical or chemical stimulation of the sensory system. Vision involves light striking the retina of the eye; smell is mediated by odor molecules; and hearing involves pressure waves.
Cognition is the "mental action or process of acquiring knowledge and understanding through thought, experience, and the senses". It encompasses all aspects of intellectual functions and processes such as: perception, attention, thought, imagination, intelligence, the formation of knowledge, memory and working memory, judgment and evaluation, reasoning and computation, problem-solving and decision-making, comprehension and production of language. Cognitive processes use existing knowledge and discover new knowledge.
Artificial consciousness (AC), also known as machine consciousness (MC), synthetic consciousness or digital consciousness, is the consciousness hypothesized to be possible in artificial intelligence. It is also the corresponding field of study, which draws insights from philosophy of mind, philosophy of artificial intelligence, cognitive science and neuroscience. The same terminology can be used with the term "sentience" instead of "consciousness" when specifically designating phenomenal consciousness.
A cognitive model is an approximation of one or more cognitive processes in humans or other animals for the purposes of comprehension and prediction. There are many types of cognitive models, and they can range from box-and-arrow diagrams to a set of equations to software programs that interact with the same tools that humans use to complete tasks. In terms of information processing, cognitive modeling is modeling of human perception, reasoning, memory and action.
Andy Clark, is a British philosopher who is Professor of Cognitive Philosophy at the University of Sussex. Prior to this, he was a professor of philosophy and Chair in Logic and Metaphysics at the University of Edinburgh in Scotland, director of the Cognitive Science Program at Indiana University in Bloomington, Indiana and previously taught at Washington University in St. Louis, Missouri. Clark is one of the founding members of the CONTACT collaborative research project whose aim is to investigate the role environment plays in shaping the nature of conscious experience. Clark's papers and books deal with the philosophy of mind and he is considered a leading scholar on the subject of mind extension. He has also written extensively on connectionism, robotics and the role and nature of mental representation.
Situated cognition is a theory that posits that knowing is inseparable from doing by arguing that all knowledge is situated in activity bound to social, cultural and physical contexts.
Cognitive development is a field of study in neuroscience and psychology focusing on a child's development in terms of information processing, conceptual resources, perceptual skill, language learning, and other aspects of the developed adult brain and cognitive psychology. Qualitative differences between how a child processes their waking experience and how an adult processes their waking experience are acknowledged. Cognitive development is defined as the emergence of the ability to consciously cognize, understand, and articulate their understanding in adult terms. Cognitive development is how a person perceives, thinks, and gains understanding of their world through the relations of genetic and learning factors. There are four stages to cognitive information development. They are, reasoning, intelligence, language, and memory. These stages start when the baby is about 18 months old, they play with toys, listen to their parents speak, they watch TV, anything that catches their attention helps build their cognitive development.
Cognitive Robotics or Cognitive Technology is a subfield of robotics concerned with endowing a robot with intelligent behavior by providing it with a processing architecture that will allow it to learn and reason about how to behave in response to complex goals in a complex world. Cognitive robotics may be considered the engineering branch of embodied cognitive science and embodied embedded cognition, consisting of Robotic Process Automation, Artificial Intelligence, Machine Learning, Deep Learning, Optical Character Recognition, Image Processing, Process Mining, Analytics, Software Development and System Integration.
Enactivism is a position in cognitive science that argues that cognition arises through a dynamic interaction between an acting organism and its environment. It claims that the environment of an organism is brought about, or enacted, by the active exercise of that organism's sensorimotor processes. "The key point, then, is that the species brings forth and specifies its own domain of problems ...this domain does not exist "out there" in an environment that acts as a landing pad for organisms that somehow drop or parachute into the world. Instead, living beings and their environments stand in relation to each other through mutual specification or codetermination" (p. 198). "Organisms do not passively receive information from their environments, which they then translate into internal representations. Natural cognitive systems...participate in the generation of meaning ...engaging in transformational and not merely informational interactions: they enact a world." These authors suggest that the increasing emphasis upon enactive terminology presages a new era in thinking about cognitive science. How the actions involved in enactivism relate to age-old questions about free will remains a topic of active debate.
Machine perception is the capability of a computer system to interpret data in a manner that is similar to the way humans use their senses to relate to the world around them. The basic method that the computers take in and respond to their environment is through the attached hardware. Until recently input was limited to a keyboard, or a mouse, but advances in technology, both in hardware and software, have allowed computers to take in sensory input in a way similar to humans.
Neurorobotics is the combined study of neuroscience, robotics, and artificial intelligence. It is the science and technology of embodied autonomous neural systems. Neural systems include brain-inspired algorithms, computational models of biological neural networks and actual biological systems. Such neural systems can be embodied in machines with mechanic or any other forms of physical actuation. This includes robots, prosthetic or wearable systems but also, at smaller scale, micro-machines and, at the larger scales, furniture and infrastructures.
Psi-theory, developed by Dietrich Dörner at the University of Bamberg, is a systemic psychological theory covering human action regulation, intention selection and emotion. It models the human mind as an information processing agent, controlled by a set of basic physiological, social and cognitive drives. Perceptual and cognitive processing are directed and modulated by these drives, which allow the autonomous establishment and pursuit of goals in an open environment.
Bayesian approaches to brain function investigate the capacity of the nervous system to operate in situations of uncertainty in a fashion that is close to the optimal prescribed by Bayesian statistics. This term is used in behavioural sciences and neuroscience and studies associated with this term often strive to explain the brain's cognitive abilities based on statistical principles. It is frequently assumed that the nervous system maintains internal probabilistic models that are updated by neural processing of sensory information using methods approximating those of Bayesian probability.
Object-Action Complexes (OACs) are proposed as a universal representation enabling efficient planning and execution of purposeful action at all levels of a cognitive architecture. OACs combine the representational and computational efficiency for purposes of search of STRIPS rules and the object- and situation-oriented concept of affordance with the logical clarity of the event calculus. Affordance is the relation between a situation, usually including an object of a defined type, and the actions that it allows. While affordances have mostly been analyzed in their purely perceptual aspect, the OAC concept defines them more generally as state transition functions suited to prediction. Such functions can be used for efficient forward chaining planning, learning, and execution of actions represented simultaneously at multiple levels in an embodied agent architecture.
Externalism is a group of positions in the philosophy of mind which argues that the conscious mind is not only the result of what is going on inside the nervous system, but also what occurs or exists outside the subject. It is contrasted with internalism which holds that the mind emerges from neural activity alone. Externalism is a belief that the mind is not just the brain or functions of the brain.
Embodied cognition is the concept suggesting that many features of cognition are shaped by the state and capacities of the organism. The cognitive features include a wide spectrum of cognitive functions, such as perception biases, memory recall, comprehension and high-level mental constructs and performance on various cognitive tasks. The bodily aspects involve the motor system, the perceptual system, the bodily interactions with the environment (situatedness), and the assumptions about the world built the functional structure of organism's brain and body.
Cognitive biology is an emerging science that regards natural cognition as a biological function. It is based on the theoretical assumption that every organism—whether a single cell or multicellular—is continually engaged in systematic acts of cognition coupled with intentional behaviors, i.e., a sensory-motor coupling. That is to say, if an organism can sense stimuli in its environment and respond accordingly, it is cognitive. Any explanation of how natural cognition may manifest in an organism is constrained by the biological conditions in which its genes survive from one generation to the next. And since by Darwinian theory the species of every organism is evolving from a common root, three further elements of cognitive biology are required: (i) the study of cognition in one species of organism is useful, through contrast and comparison, to the study of another species' cognitive abilities; (ii) it is useful to proceed from organisms with simpler to those with more complex cognitive systems, and (iii) the greater the number and variety of species studied in this regard, the more we understand the nature of cognition.
In philosophy of mind, the extended mind thesis says that the mind does not exclusively reside in the brain or even the body, but extends into the physical world. The thesis proposes that some objects in the external environment can be part of a cognitive process and in that way function as extensions of the mind itself. Examples of such objects are written calculations, a diary, or a PC; in general, it concerns objects that store information. The hypothesis considers the mind to encompass every level of cognition, including the physical level.
In neuroscience, predictive coding is a theory of brain function which postulates that the brain is constantly generating and updating a "mental model" of the environment. According to the theory, such a mental model is used to predict input signals from the senses that are then compared with the actual input signals from those senses. With the rising popularity of representation learning, the theory is being actively pursued and applied in machine learning and related fields.