Emergent (software)

Last updated
Emergent
Original author(s) Carnegie Mellon University
Developer(s) University of Colorado at Boulder
Stable release
8.2.0 / September 7, 2017 (2017-09-07)
Operating system Cross-platform
Type Neural network software
License GPL
Website Emergent homepage

Emergent (formerly PDP++) is a neural simulation software that is primarily intended for creating models of the brain and cognitive processes. Development initially began in 1995 at Carnegie Mellon University, and as of 2014, continues at the University of Colorado at Boulder. The 3.x release of the software, which was known as PDP++, is featured in the textbook Computational Explorations in Cognitive Neuroscience.

Contents

Features

Emergent features a modular design, based on the principles of object-oriented programming. It runs on Microsoft Windows, Darwin / macOS and Linux. C-Super-Script (variously, CSS and C^C), a built-in C++-like interpreted scripting language, allows access to virtually all simulator objects and can initiate all the same actions as the GUI, and more. Version 4 and upward features a full 3D environment for visualizations, based on Qt and Open Inventor. Robotics simulations are made possible by integration with the Open Dynamics Engine. A plugin system allows for expanding the software in many ways. Version 5 introduced parallel threading support, numerous speed improvements, a help browser featuring an interface to the project's Wiki and auto-generated documentation, undo and redo using diffs and a definable undo depth. In addition, 5.0.2 introduced a built-in plugin source code editor, and plugins can now be compiled from the main interface, enabling full development of plugins within Emergent.

Emergent also provides an implementation of Leabra which was developed by Randall C. O'Reilly in his PhD thesis. [1]

See also

Bibliography

Related Research Articles

<span class="mw-page-title-main">Neuroscience</span> Scientific study of the nervous system

Neuroscience is the scientific study of the nervous system, its functions and disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, developmental biology, cytology, psychology, physics, computer science, chemistry, medicine, statistics, and mathematical modeling to understand the fundamental and emergent properties of neurons, glia and neural circuits. The understanding of the biological basis of learning, memory, behavior, perception, and consciousness has been described by Eric Kandel as the "epic challenge" of the biological sciences.

Artificial consciousness (AC), also known as machine consciousness (MC), synthetic consciousness or digital consciousness, is the consciousness hypothesized to be possible in artificial intelligence. It is also the corresponding field of study, which draws insights from philosophy of mind, philosophy of artificial intelligence, cognitive science and neuroscience. The same terminology can be used with the term "sentience" instead of "consciousness" when specifically designating phenomenal consciousness.

Computational neuroscience is a branch of neuroscience which employs mathematics, computer science, theoretical analysis and abstractions of the brain to understand the principles that govern the development, structure, physiology and cognitive abilities of the nervous system.

Bio-inspired computing, short for biologically inspired computing, is a field of study which seeks to solve computer science problems using models of biology. It relates to connectionism, social behavior, and emergence. Within computer science, bio-inspired computing relates to artificial intelligence and machine learning. Bio-inspired computing is a major subset of natural computation.

<span class="mw-page-title-main">Visual Molecular Dynamics</span> Visualization and modelling software

Visual Molecular Dynamics (VMD) is a molecular modelling and visualization computer program. VMD is developed mainly as a tool to view and analyze the results of molecular dynamics simulations. It also includes tools for working with volumetric data, sequence data, and arbitrary graphics objects. Molecular scenes can be exported to external rendering tools such as POV-Ray, RenderMan, Tachyon, Virtual Reality Modeling Language (VRML), and many others. Users can run their own Tcl and Python scripts within VMD as it includes embedded Tcl and Python interpreters. VMD runs on Unix, Apple Mac macOS, and Microsoft Windows. VMD is available to non-commercial users under a distribution-specific license which permits both use of the program and modification of its source code, at no charge.

Neurophilosophy or philosophy of neuroscience is the interdisciplinary study of neuroscience and philosophy that explores the relevance of neuroscientific studies to the arguments traditionally categorized as philosophy of mind. The philosophy of neuroscience attempts to clarify neuroscientific methods and results using the conceptual rigor and methods of philosophy of science.

Neuroinformatics is the field that combines informatics and neuroscience. Neuroinformatics is related with neuroscience data and information processing by artificial neural networks. There are three main directions where neuroinformatics has to be applied:

Neural network software is used to simulate, research, develop, and apply artificial neural networks, software concepts adapted from biological neural networks, and in some cases, a wider array of adaptive systems such as artificial intelligence and machine learning.

Leabra stands for local, error-driven and associative, biologically realistic algorithm. It is a model of learning which is a balance between Hebbian and error-driven learning with other network-derived characteristics. This model is used to mathematically predict outcomes based on inputs and previous learning influences. This model is heavily influenced by and contributes to neural network designs and models. This algorithm is the default algorithm in emergent when making a new project, and is extensively used in various simulations.

GENESIS is a simulation environment for constructing realistic models of neurobiological systems at many levels of scale including: sub-cellular processes, individual neurons, networks of neurons, and neuronal systems. These simulations are “computer-based implementations of models whose primary objective is to capture what is known of the anatomical structure and physiological characteristics of the neural system of interest”. GENESIS is intended to quantify the physical framework of the nervous system in a way that allows for easy understanding of the physical structure of the nerves in question. “At present only GENESIS allows parallelized modeling of single neurons and networks on multiple-instruction-multiple-data parallel computers.” Development of GENESIS software spread from its home at Caltech to labs at the University of Texas at San Antonio, the University of Antwerp, the National Centre for Biological Sciences in Bangalore, the University of Colorado, the Pittsburgh Supercomputing Center, the San Diego Supercomputer Center, and Emory University.

Brain simulation is the concept of creating a functioning computer model of a brain or part of a brain. Brain simulation projects intend to contribute to a complete understanding of the brain, and eventually also assist the process of treating and diagnosing brain diseases.

Randall Charles O'Reilly is a professor of psychology and computer science at the Center for Neuroscience at the University of California, Davis. His lab moved to UC Davis from the University of Colorado at Boulder in 2019.

GeneRec is a generalization of the recirculation algorithm, and approximates Almeida-Pineda recurrent backpropagation. It is used as part of the Leabra algorithm for error-driven learning.

The Dehaene–Changeux model (DCM), also known as the global neuronal workspace or the global cognitive workspace model, is a part of Bernard Baars's "global workspace model" for consciousness.

Network of human nervous system comprises nodes that are connected by links. The connectivity may be viewed anatomically, functionally, or electrophysiologically. These are presented in several Wikipedia articles that include Connectionism, Biological neural network, Artificial neural network, Computational neuroscience, as well as in several books by Ascoli, G. A. (2002), Sterratt, D., Graham, B., Gillies, A., & Willshaw, D. (2011), Gerstner, W., & Kistler, W. (2002), and Rumelhart, J. L., McClelland, J. L., and PDP Research Group (1986) among others. The focus of this article is a comprehensive view of modeling a neural network. Once an approach based on the perspective and connectivity is chosen, the models are developed at microscopic, mesoscopic, or macroscopic (system) levels. Computational modeling refers to models that are developed using computing tools.

<span class="mw-page-title-main">NEST (software)</span>

NEST is a simulation software for spiking neural network models, including large-scale neuronal networks. NEST was initially developed by Markus Diesmann and Marc-Oliver Gewaltig and is now developed and maintained by the NEST Initiative.

AnimatLab is an open-source neuromechanical simulation tool that allows authors to easily build and test biomechanical models and the neural networks that control them to produce behaviors. Users can construct neural models of varied level of details, 3D mechanical models of triangle meshes, and use muscles, motors, receptive fields, stretch sensors and other transducers to interface the two systems. Experiments can be run in which various stimuli are applied and data is recorded, making it a useful tool for computational neuroscience. The software can also be used to model biomimetic robotic systems.

Neural Engineering Object (Nengo) is a graphical and scripting software for simulating large-scale neural systems. As the neural network software Nengo is a tool for modelling neural networks with applications in cognitive science, psychology, artificial intelligence and neuroscience.

<span class="mw-page-title-main">Art of Illusion</span>

Art of Illusion is a free software, and open source software package for making 3D graphics.

References

  1. "Randall C. O'Reilly's Online Publications". psych.colorado.edu.