End correction

Last updated

Whenever a wave forms through a medium/object (organ pipe) with a closed/open end, there is a chance of error in the formation of the wave, i.e. it may not actually start from the opening of the object but instead before the opening, thus resulting on an error when studying it theoretically. Hence an end correction is sometimes required to appropriately study its properties. The end correction depends on the radius of the object.

Contents

An acoustic pipe, such as an organ pipe, marimba, or flute resonates at a specific pitch or frequency. Longer pipes resonate at lower frequencies, producing lower-pitched sounds. The details of acoustic resonance are taught in many elementary physics classes. In an ideal tube, the wavelength of the sound produced is directly proportional to the length of the tube. A tube which is open at one end and closed at the other produces sound with a wavelength equal to four times the length of the tube. A tube which is open at both ends produces sound whose wavelength is just twice the length of the tube. Thus, when a Boomwhacker with two open ends is capped at one end, the pitch produced by the tube goes down by one octave.

The analysis above applies only to an ideal tube, of zero diameter. When designing an organ or Boomwhacker, the diameter of the tube must be taken into account. In acoustics, end correction is a short distance applied or added to the actual length of a resonance pipe, in order to calculate the precise resonant frequency of the pipe. The pitch of a real tube is lower than the pitch predicted by the simple theory. A finite diameter pipe appears to be acoustically somewhat longer than its physical length. [1]

A theoretical basis for computation of the end correction is the radiation acoustic impedance of a circular piston. This impedance represents the ratio of acoustic pressure at the piston, divided by the flow rate induced by it. The air speed is typically assumed to be uniform across the tube end. This is a good approximation, but not exactly true in reality, since air viscosity reduces the flow rate in the boundary layer very close to the tube surface. Thus, the air column inside the tube is loaded by the external fluid due to sound energy radiation. This requires an additional length to be added to the regular length for calculating the natural frequency of the pipe system.

The end correction is denoted by and sometimes by . In organ pipes, a displacement antinode is not formed exactly at the open end. Rather, the antinode is formed a little distance away from the open end outside it.

This is known as end correction, which can be calculated as:

,
If you add this in total length calculated based on sound frequency the actual length will be longer. This equation will increase the flute length if flute diameter will be larger but in real sense it reduces the length as the diameter increases. It looks contradictory but in real sense this equation is not accurate for all bore / pipe diameter. For example this is correct for G bass flute for 20mm bore diameter but as diameter increases then this equation have negative effect means length will reduce. The pipe wall thickness correction also need to be added here for accuracy.

where is the radius [ dubious ] of the neck and is the hydraulic diameter of the neck; [2]

.

The exact number for the end correction depends on a number of factors relating to the geometry of the pipe. Lord Rayleigh was the first experimenter to publish a figure, in 1871: it was [ citation needed ]. Other experiments have yielded results such as [3] and . [4] The end correction for ideal cylindrical tubes was calculated to be by Levine and Schwinger. [5]

Notes

  1. End Correction at a Flue Pipe Mouth
  2. Ruiz, Michael J. "Boomwhackers and end-pipe corrections." The Physics Teacher 52.2 (2014): 73-75. Available online at http://www.mjtruiz.com/publications/2014_boomwhackers.pdf Archived 2023-05-11 at the Wayback Machine
  3. Bosanquet, R.H.M. (1878). "VIII. On the relation between the notes of open and stopped pipes". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 6 (34): 63–66. doi:10.1080/14786447808639471. ISSN   1941-5982.
  4. Bate, A.E. (1930). "LX. (i.)The end-corrections of an open organ flue-pipe; and(ii.)The acoustical conductance of orifices". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 10 (65): 617–632. doi:10.1080/14786443009461614. ISSN   1941-5982.
  5. Levine, Harold; Schwinger, Julian (1948). "On the Radiation of Sound from an Unflanged Circular Pipe". Physical Review. 73 (4): 383–406. doi:10.1103/PhysRev.73.383. ISSN   0031-899X.

Sources

Related Research Articles

<span class="mw-page-title-main">Pan flute</span> Musical instrument, typically made from bamboo

A pan flute is a musical instrument based on the principle of the closed tube, consisting of multiple pipes of gradually increasing length. Multiple varieties of pan flutes have been popular as folk instruments. The pipes are typically made from bamboo, giant cane, or local reeds. Other materials include wood, plastic, metal and ivory.

<span class="mw-page-title-main">Standing wave</span> Wave that remains in a constant position

In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect to time, and the oscillations at different points throughout the wave are in phase. The locations at which the absolute value of the amplitude is minimum are called nodes, and the locations where the absolute value of the amplitude is maximum are called antinodes.

<span class="mw-page-title-main">Speed of sound</span> Speed of sound wave through elastic medium

The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 m/s, or one km in 2.91 s or one mile in 4.69 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating. At 0 °C (32 °F), the speed of sound in air is about 331 m/s. More simply, the speed of sound is how fast vibrations travel.

<span class="mw-page-title-main">Dipole antenna</span> Antenna consisting of two rod shaped conductors

In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods. The driving current from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the two halves of the antenna. Each side of the feedline to the transmitter or receiver is connected to one of the conductors. This contrasts with a monopole antenna, which consists of a single rod or conductor with one side of the feedline connected to it, and the other side connected to some type of ground. A common example of a dipole is the "rabbit ears" television antenna found on broadcast television sets.

<span class="mw-page-title-main">String vibration</span> A wave

A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrating strings are the basis of string instruments such as guitars, cellos, and pianos.

<span class="mw-page-title-main">Node (physics)</span> Point with minimum wave amplitude

A node is a point along a standing wave where the wave has minimum amplitude. For instance, in a vibrating guitar string, the ends of the string are nodes. By changing the position of the end node through frets, the guitarist changes the effective length of the vibrating string and thereby the note played. The opposite of a node is an anti-node, a point where the amplitude of the standing wave is at maximum. These occur midway between the nodes.

<span class="mw-page-title-main">Organ flue pipe scaling</span>

Scaling is the ratio of an organ pipe's diameter to its length. The scaling of a pipe is a major influence on its timbre. Reed pipes are scaled according to different formulas than for flue pipes. In general, the larger the diameter of a given pipe at a given pitch, the fuller and more fundamental the sound becomes.

In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat. It is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient has SI units in watts per square meter per kelvin (W/m²K).

<span class="mw-page-title-main">Flue pipe</span>

A flue pipe is an organ pipe that produces sound through the vibration of air molecules, in the same manner as a recorder or a whistle. Air under pressure is driven through a flue and against a sharp lip called a labium, causing the column of air in the pipe to resonate at a frequency determined by the pipe length. Thus, there are no moving parts in a flue pipe. This is in contrast to reed pipes, whose sound is driven by beating reeds, as in a clarinet. Flue pipes are common components of pipe organs.

<span class="mw-page-title-main">Steam whistle</span> Audible warning device powered by steam

A steam whistle is a device used to produce sound in the form of a whistle using live steam, which creates, projects, and amplifies its sound by acting as a vibrating system.

<span class="mw-page-title-main">Helmholtz resonance</span> Phenomenon of air resonance in a cavity

Helmholtz resonance, also known as wind throb, refers to the phenomenon of air resonance in a cavity, an effect named after the German physicist Hermann von Helmholtz. This type of resonance occurs when air is forced in and out of a cavity, causing the air inside to vibrate at a specific natural frequency. The principle is widely observable in everyday life, notably when blowing across the top of a bottle, resulting in a resonant tone.

<span class="mw-page-title-main">Lecher line</span>

In electronics, a Lecher line or Lecher wires is a pair of parallel wires or rods that were used to measure the wavelength of radio waves, mainly at VHF, UHF and microwave frequencies. They form a short length of balanced transmission line. When attached to a source of radio-frequency power such as a radio transmitter, the radio waves form standing waves along their length. By sliding a conductive bar that bridges the two wires along their length, the length of the waves can be physically measured. Austrian physicist Ernst Lecher, improving on techniques used by Oliver Lodge and Heinrich Hertz, developed this method of measuring wavelength around 1888. Lecher lines were used as frequency measuring devices until inexpensive frequency counters became available after World War 2. They were also used as components, often called "resonant stubs", in VHF, UHF and microwave radio equipment such as transmitters, radar sets, and television sets, serving as tank circuits, filters, and impedance-matching devices. They are used at frequencies between HF/VHF, where lumped components are used, and UHF/SHF, where resonant cavities are more practical.

<span class="mw-page-title-main">Acoustic resonance</span> Resonance phenomena in sound and musical devices

Acoustic resonance is a phenomenon in which an acoustic system amplifies sound waves whose frequency matches one of its own natural frequencies of vibration.

<span class="mw-page-title-main">Bore (wind instruments)</span>

In music, the bore of a wind instrument is its interior chamber. This defines a flow path through which air travels, which is set into vibration to produce sounds. The shape of the bore has a strong influence on the instrument's timbre.

<span class="mw-page-title-main">Acoustic transmission line</span> Acoustic waveguide used to transmit sound

An acoustic transmission line is the use of a long duct, which acts as an acoustic waveguide and is used to produce or transmit sound in an undistorted manner. Technically it is the acoustic analog of the electrical transmission line, typically conceived as a rigid-walled duct or tube, that is long and thin relative to the wavelength of sound present in it.

An organ pipe, or a harpsichord string, designated as eight-foot pitch (8′) is sounded at standard, ordinary pitch. For example, the A above middle C in eight-foot pitch would be sounded at 440 Hz.

<span class="mw-page-title-main">Acousto-optics</span> The study of sound and light interaction

Acousto-optics is a branch of physics that studies the interactions between sound waves and light waves, especially the diffraction of laser light by ultrasound through an ultrasonic grating.

The whirly tube, corrugaphone, or bloogle resonator, also sold as Free-Ka in the 1960s-1970s, is an experimental musical instrument which consists of a corrugated (ribbed) plastic tube or hose, open at both ends and possibly wider at one end (bell), the thinner of which is rotated in a circle to play. It may be a few feet long and about a few inches wide. The faster the toy is swung, the higher the pitch of the note it produces, and it produces discrete notes roughly belonging to the harmonic series, like a valveless brass instrument generates different modes of vibration. However, the first and the second modes, corresponding to the fundamental and the second harmonics, are reported as being difficult to excite. To be played in concert the length of the tube must be trimmed to tune it.

A whistle is a device that makes sound from air blown from one end forced through a small opening at the opposite end. They are shaped in a way that allows air to oscillate inside of a chamber in an unstable way. The physical theory of the sound-making process is an example of the application of fluid dynamics or hydrodynamics and aerodynamics. The principles relevant to whistle operation also have applications in other areas, such as fluid flow measurement.

In X-ray diffraction, the Rachinger correction is a method for accounting for the effect of an undesired K-alpha 2 peak in the energy spectrum. Ideally, diffraction measurements are made with X-rays of a single wavelength. Practically, the x-rays for a measurement are usually generated in an X-ray tube from a metal's K-alpha line. This generation creates x-rays at a variety of wavelengths, but most of the non K-alpha X-rays can be blocked from reaching the sample by filters. However, the K-alpha line is actually two x-ray lines close together: the stronger K-alpha 1 peak, and the weaker K-alpha 2 peak. Compared to other radiation such as the Bremsstrahlung, the K-alpha two peak is more difficult to filter mechanically. The Rachinger correction is a recursive method suggested by William Albert Rachinger (1927) to eliminate the disturbing peak.