Energy balance (energy economics)

Last updated

Energy balance, in terms of energy economics, is concerned with all processes within an organization that have a reference to energy. It derives from the ecobalance and has the ambition to analyze and verify the emergence, transformation and use of energy resources in an organization in detail. [1] Energy balances serve as a major statistical data base for energy policy and energy management decisions. They contain important information such as the amount and composition of energy consumption, its changes or the transformation of energy. [2]

Contents

Countries and NGOs publish energy balances, for instance World Energy Balances published by the International Energy Agency IEA. [3]

Approach

The basic idea of a balance is that nothing can get lost or annihilated - this fits to the first law of thermodynamics, which assigns energy this property. But energy splits up during usage and its output does not have the same potential for the physical performance as before. [4]

For this reason it is important to distinguish between input and output of energy usage. The input side can easily be measured with the help of the meter readings. But on the output side there may be effects that are difficulty predictable, such as heat, dust or noise. In this context it is very interesting, how much of the energy used has actually reached the intended use. Based on this calculation, improvement measures can be derived. A separation in energy sources and places of consumption is necessary. An Outline based on the cost centre of the organization is also possible. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Renewable energy</span> Energy collected from renewable resources

Renewable energy is energy from renewable resources that are naturally replenished on a human timescale. Renewable resources include sunlight, wind, the movement of water, and geothermal heat. Although most renewable energy sources are sustainable, some are not. For example, some biomass sources are considered unsustainable at current rates of exploitation. Renewable energy is often used for electricity generation, heating and cooling. Renewable energy projects are typically large-scale, but they are also suited to rural and remote areas and developing countries, where energy is often crucial in human development. Renewable energy is often deployed together with further electrification, which has several benefits: electricity can move heat or objects efficiently, and is clean at the point of consumption.

<span class="mw-page-title-main">Server (computing)</span> Computer to access a central resource or service on a network

In computing, a server is a piece of computer hardware or software that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients or performing computations for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.

Food energy is chemical energy that animals derive from their food to sustain their metabolism, including their muscular activity.

In economics, an input–output model is a quantitative economic model that represents the interdependencies between different sectors of a national economy or different regional economies. Wassily Leontief (1906–1999) is credited with developing this type of analysis and earned the Nobel Prize in Economics for his development of this model.

<span class="mw-page-title-main">Sustainable energy</span> Energy that meets social, economic, and environmental needs

Energy is sustainable if it "meets the needs of the present without compromising the ability of future generations to meet their own needs." Most definitions of sustainable energy include considerations of environmental aspects such as greenhouse gas emissions and social and economic aspects such as energy poverty. Renewable energy sources such as wind, hydroelectric power, solar, and geothermal energy are generally far more sustainable than fossil fuel sources. However, some renewable energy projects, such as the clearing of forests to produce biofuels, can cause severe environmental damage.

In energy economics and ecological energetics, energy return on investment (EROI), also sometimes called energy returned on energy invested (ERoEI), is the ratio of the amount of usable energy delivered from a particular energy resource to the amount of exergy used to obtain that energy resource.

Primary energy (PE) is the energy found in nature that has not been subjected to any human engineered conversion process. It encompasses energy contained in raw fuels and other forms of energy, including waste, received as input to a system. Primary energy can be non-renewable or renewable.

<span class="mw-page-title-main">Carbon footprint</span> Concept to quantify greenhouse gas emissions from activities or products

The carbon footprint (or greenhouse gas footprint) serves as an indicator to compare the total amount of greenhouse gases emitted from an activity, product, company or country. Carbon footprints are usually reported in tons of emissions (CO2-equivalent) per unit of comparison; such as per year, person, kg protein, km travelled and alike. For a product, its carbon footprint includes the emissions for the entire life cycle from the production along the supply chain to its final consumption and disposal. Similarly for an organization, its carbon footprint includes the direct as well as the indirect emissions caused by the organization (called Scope 1, 2 and 3 in the Greenhouse Gas Protocol that is used for carbon accounting of organizations). Several methodologies and online tools exist to calculate the carbon footprint, depending on whether the focus is on a country, organization, product or individual person. For example, the carbon footprint of a product could help consumers decide which product to buy if they want to be climate aware. In the context of climate change mitigation activities, the carbon footprint can help distinguish those economic activities with a high footprint from those with a low footprint. In other words, the carbon footprint concept allows everyone to make comparisons between the climate-relevant impacts of individuals, products, companies, countries. In doing so, it helps to devise strategies and priorities for reducing the carbon footprint.

<span class="mw-page-title-main">Sankey diagram</span> Specific type of graphic flow diagram

Sankey diagrams are a type of flow diagram in which the width of the arrows is proportional to the flow rate of the depicted extensive property.

<span class="mw-page-title-main">Electric energy consumption</span> Worldwide consumption of electricity

Electric energy consumption is energy consumption in the form of electrical energy. About a fifth of global energy is consumed as electricity: for residential, industrial, commercial, transportation and other purposes. Quickly increasing this share by further electrification is extremely important to limit climate change, because most other energy is consumed by burning fossil fuels thus emitting greenhouse gases which trap heat.

<span class="mw-page-title-main">Energy conversion efficiency</span> Ratio between the useful output and the input of a machine

Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radiation), or heat. The resulting value, η (eta), ranges between 0 and 1.

<span class="mw-page-title-main">Energy audit</span> Inspection, survey and analysis of energy flows in a building

An energy audit is an inspection survey and an analysis of energy flows for energy conservation in a building. It may include a process or system to reduce the amount of energy input into the system without negatively affecting the output. In commercial and industrial real estate, an energy audit is the first step in identifying opportunities to reduce energy expense and carbon footprint.

<span class="mw-page-title-main">Renewable energy commercialization</span> Deployment of technologies harnessing easily replenished natural resources

Renewable energy commercialization involves the deployment of three generations of renewable energy technologies dating back more than 100 years. First-generation technologies, which are already mature and economically competitive, include biomass, hydroelectricity, geothermal power and heat. Second-generation technologies are market-ready and are being deployed at the present time; they include solar heating, photovoltaics, wind power, solar thermal power stations, and modern forms of bioenergy. Third-generation technologies require continued R&D efforts in order to make large contributions on a global scale and include advanced biomass gasification, hot-dry-rock geothermal power, and ocean energy. As of 2012, renewable energy accounts for about half of new nameplate electrical capacity installed and costs are continuing to fall.

<span class="mw-page-title-main">Energy in India</span> Overview of the production, consumption, import and export of energy and electricity in India

Since 2013, total primary energy consumption in India has been the third highest in the world after China and United States. India is the second-top coal consumer in the year 2017 after China. India ranks third in oil consumption with 22.1 crore tons in 2017 after United States and China. India is net energy importer to meet nearly 47% of its total primary energy in 2019.

<span class="mw-page-title-main">Energy in Finland</span> Overview of the production, consumption, import and export of energy and electricity in Finland

Energy in Finland describes energy and electricity production, consumption and import in Finland. Energy policy of Finland describes the politics of Finland related to energy. Electricity sector in Finland is the main article of electricity in Finland.

The watt is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named in honor of James Watt (1736–1819), an 18th-century Scottish inventor, mechanical engineer, and chemist who improved the Newcomen engine with his own steam engine in 1776. Watt's invention was fundamental for the Industrial Revolution.

<span class="mw-page-title-main">Energy in Switzerland</span> Overview of energy in Switzerland

The energy sector in Switzerland is, by its structure and importance, typical of a developed country. Apart from hydroelectric power and firewood, the country has few indigenous energy resources: oil products, natural gas and nuclear fuel are imported, so that in 2013 only 22.6% of primary energy consumption was supplied by local resources.

<span class="mw-page-title-main">Energy in Qatar</span>

Energy in Qatar describes energy production, consumption, and policies of the State of Qatar. The International Monetary Fund ranked Qatar as having the fifth highest GDP per capita in 2016 with a 60,787 USD per capita nominal GDP over a population of 2.421 million inhabitants. In 2014, oil and natural gas production made up 51.1% of Qatar's nominal GDP. Thus, Qatar has a worldwide high ranking of per capita GDP due to its significance production and exports in both crude oil and natural gas in proportion to its relatively small population.

<span class="mw-page-title-main">Energy system</span> All components related to production, conversion, delivery, and use of energy

An energy system is a system primarily designed to supply energy-services to end-users. The intent behind energy systems is to minimise energy losses to a negligible level, as well as to ensure the efficient use of energy. The IPCC Fifth Assessment Report defines an energy system as "all components related to the production, conversion, delivery, and use of energy".

<span class="mw-page-title-main">World energy supply and consumption</span> Global production and usage of energy

World energy supply and consumption is global production and preparation of fuel, generation of electricity, energy transport, and energy consumption. It is a basic part of economic activity. It includes heat, but not energy from food.

References

  1. Zur Methodik der Energiebilanzen, retrieved 22 January 2013.
  2. AGEB Erläuterungen, retrieved 22 January 2013.
  3. https://webstore.iea.org/world-energy-balances-2019
  4. Böning, Jeanette A.: Methoden betrieblicher Ökobilanzierung, 1994, ISBN   3-89518-014-9, p. 26.
  5. Johannes Kals: Betriebliches Energiemanagement - Eine Einführung. Kohlhammer Verlag, Stuttgart 2010, ISBN   978-3-17-021133-9, p. 25 - 27.