Energy management system (building management)

Last updated

An Energy Management System is, in the context of energy conservation, a computer system which is designed specifically for the automated control and monitoring of those electromechanical facilities in a building which yield significant energy consumption such as heating, ventilation and lighting installations. The scope may span from a single building to a group of buildings such as university campuses, office buildings, retail stores networks or factories. Most of these energy management systems also provide facilities for the reading of electricity, gas and water meters. The data obtained from these can then be used to perform self-diagnostic and optimization routines on a frequent basis and to produce trend analysis and annual consumption forecasts. [1] [2]

Contents

Energy management systems are also often commonly used by individual commercial entities to monitor, measure, and control their electrical building loads. Energy management systems can be used to centrally control devices like HVAC units and lighting systems across multiple locations, such as retail, grocery and restaurant sites. Energy management systems can also provide metering, submetering, and monitoring functions that allow facility and building managers to gather data and insight that allows them to make more informed decisions about energy activities across their sites.

Smart Energy Management System (SEMS) usually refers to energy management systems capable of dynamically adapting and efficiently managing new energy scenatrios with minimal human intervention through the use of artificial intelligence. These systems typically include self-supervised learning (SSL) machine learning models for energy consumption and generation forecasting which allows for better planning of the operation of energy infrastructure. The models also typically take into account energy price data and through the use of mathematical optimization algorithms (typically linear programming) are able to minimize the energy costs of a given system.

Smart Energy Management Systems (SEMS) are used in both residential sector, such as SoliTek NOVA [3] and in commercial/insdustrial applications of various types [4] . SEMS plays a key role in most smart grid concepts as it enables use cases such as virtual power plants and demand response [5] .

As electric vehicle (EV) charging becomes more popular smaller residential devices that manage when an EV can charge based on the total load vs total capacity of an electrical service are becoming popular. [6] The global energy management system market is projected to grow exponentially over the next 10–15 years.

Protocols

In residential settings, the S2 Standard was developed in 2010. [7] The S2 Standard provides a standard communication protocol, enabling communication between smart devices and an EMS. It is an open source protocol for the energy management of energy intensive devices found in the build environment, such as photovoltaic (PV) systems, electric vehicle (EV) chargers, batteries, (hybrid) heat pumps and white goods. It is built in such a way that it can work with any flexible device from any manufacturer, and that it would work for any energy management use case. The standard was ratified as a European standard by the European Electrotechnical Committee for Standardization (CENELEC) in 2018, in the form of the EN 50491–12 series. [8] [9]

An EMS can provide energy efficiency through process optimization by reporting on granular energy use by individual pieces of equipment. Newer, cloud-based energy management systems provide the ability to remotely control HVAC and other energy-consuming equipment; gather detailed, real-time data for each piece of equipment; and generate intelligent, specific, real-time guidance on finding and capturing the most compelling savings opportunities. [10]

See also

Related Research Articles

<span class="mw-page-title-main">KNX</span> Standard in building automation

KNX is an open standard for commercial and residential building automation. KNX devices can manage lighting, blinds and shutters, HVAC, security systems, energy management, audio video, white goods, displays, remote control, etc. KNX evolved from three earlier standards; the European Home Systems Protocol (EHS), BatiBUS, and the European Installation Bus.

<span class="mw-page-title-main">Power-line communication</span> Type of network

Power-line communication (PLC) is the carrying of data on a conductor that is also used simultaneously for AC electric power transmission or electric power distribution to consumers. The line that does so is known as a power-line carrier.

<span class="mw-page-title-main">Distributed generation</span> Decentralised electricity generation

Distributed generation, also distributed energy, on-site generation (OSG), or district/decentralized energy, is electrical generation and storage performed by a variety of small, grid-connected or distribution system-connected devices referred to as distributed energy resources (DER).

<span class="mw-page-title-main">Energy conservation</span> Reducing energy consumption

Energy conservation is the effort to reduce wasteful energy consumption by using fewer energy services. This can be done by using energy more effectively or changing one's behavior to use less service. Energy conservation can be achieved through efficient energy use, which has some advantages, including a reduction in greenhouse gas emissions and a smaller carbon footprint, as well as cost, water, and energy savings.

<span class="mw-page-title-main">EnOcean</span> Energy harvesting wireless technology

The EnOcean technology is an energy harvesting wireless technology used primarily in building automation systems, but also in other application fields such as industry, transportation, and logistics. The energy harvesting wireless modules are manufactured and marketed by the company EnOcean, headquartered in Oberhaching near Munich. The modules combine micro energy converters with ultra low power electronics and wireless communications and enable batteryless, wireless sensors, switches, and controls.

<span class="mw-page-title-main">Demand response</span> Techniques used to prevent power networks from being overwhelmed

Demand response is a change in the power consumption of an electric utility customer to better match the demand for power with the supply. Until the 21st century decrease in the cost of pumped storage and batteries, electric energy could not be easily stored, so utilities have traditionally matched demand and supply by throttling the production rate of their power plants, taking generating units on or off line, or importing power from other utilities. There are limits to what can be achieved on the supply side, because some generating units can take a long time to come up to full power, some units may be very expensive to operate, and demand can at times be greater than the capacity of all the available power plants put together. Demand response, a type of energy demand management, seeks to adjust in real-time the demand for power instead of adjusting the supply.

A microgrid is a local electrical grid with defined electrical boundaries, acting as a single and controllable entity. It is able to operate in grid-connected and in island mode. A 'stand-alone microgrid' or 'isolated microgrid' only operates off-the-grid and cannot be connected to a wider electric power system.

Building automation (BAS), also known as building management system (BMS) or building energy management system (BEMS), is the automatic centralized control of a building's HVAC, electrical, lighting, shading, access control, security systems, and other interrelated systems. Some objectives of building automation are improved occupant comfort, efficient operation of building systems, reduction in energy consumption, reduced operating and maintaining costs and increased security.

<span class="mw-page-title-main">Building science</span>

Building science is the science and technology-driven collection of knowledge in order to provide better indoor environmental quality (IEQ), energy-efficient built environments, and occupant comfort and satisfaction. Building physics, architectural science, and applied physics are terms used for the knowledge domain that overlaps with building science. In building science, the methods used in natural and hard sciences are widely applied, which may include controlled and quasi-experiments, randomized control, physical measurements, remote sensing, and simulations. On the other hand, methods from social and soft sciences, such as case study, interviews & focus group, observational method, surveys, and experience sampling, are also widely used in building science to understand occupant satisfaction, comfort, and experiences by acquiring qualitative data. One of the recent trends in building science is a combination of the two different methods. For instance, it is widely known that occupants' thermal sensation and comfort may vary depending on their sex, age, emotion, experiences, etc. even in the same indoor environment. Despite the advancement in data extraction and collection technology in building science, objective measurements alone can hardly represent occupants' state of mind such as comfort and preference. Therefore, researchers are trying to measure both physical contexts and understand human responses to figure out complex interrelationships.

Dynamic Demand is the name of a semi-passive technology to support demand response by adjusting the load demand on an electrical power grid. It is also the name of an independent not-for-profit organization in the UK supported by a charitable grant from the Esmée Fairbairn Foundation, dedicated to promoting this technology. The concept is that by monitoring the frequency of the power grid, as well as their own controls, intermittent domestic and industrial loads switch themselves on/off at optimal moments to balance the overall grid load with generation, reducing critical power mismatches. As this switching would only advance or delay the appliance operating cycle by a few seconds, it would be unnoticeable to the end user. This is the foundation of dynamic demand control. In the United States, in 1982, a (now-lapsed) patent for this idea was issued to power systems engineer Fred Schweppe. Other patents have been issued based on this idea.

<span class="mw-page-title-main">Load management</span> Process of balancing the supply of electricity on a network

Load management, also known as demand-side management (DSM), is the process of balancing the supply of electricity on the network with the electrical load by adjusting or controlling the load rather than the power station output. This can be achieved by direct intervention of the utility in real time, by the use of frequency sensitive relays triggering the circuit breakers, by time clocks, or by using special tariffs to influence consumer behavior. Load management allows utilities to reduce demand for electricity during peak usage times, which can, in turn, reduce costs by eliminating the need for peaking power plants. In addition, some peaking power plants can take more than an hour to bring on-line which makes load management even more critical should a plant go off-line unexpectedly for example. Load management can also help reduce harmful emissions, since peaking plants or backup generators are often dirtier and less efficient than base load power plants. New load-management technologies are constantly under development — both by private industry and public entities.

<span class="mw-page-title-main">Smart grid</span> Type of electrical grid

The smart grid is an enhancement of the 20th century electrical grid, using two-way communications and distributed so-called intelligent devices. Two-way flows of electricity and information could improve the delivery network. Research is mainly focused on three systems of a smart grid – the infrastructure system, the management system, and the protection system. Electronic power conditioning and control of the production and distribution of electricity are important aspects of the smart grid.

GridPoint is an American clean technology company based in Reston, Virginia, that provides energy management and sustainability services to enterprises and government agencies, such as electric utilities.

Energy Management Software (EMS) is a general term and category referring to a variety of energy-related software applications which may provide utility bill tracking, real-time metering, building HVAC and lighting control systems, building simulation and modeling, carbon and sustainability reporting, IT equipment management, demand response, and/or energy audits. Managing energy can require a system of systems approach.

<span class="mw-page-title-main">Hassan Farhangi</span>

Hassan Farhangi is Professor Emeritus at BCIT School of Energy and Retired Director of Smart Microgrid Applied Research Team (SMART) at the British Columbia Institute of Technology (BCIT) in Burnaby, Canada, and an adjunct professor at the School of Engineering Science at Simon Fraser University. He is known for his pioneering work in the design and development of Canada's first Smart Microgrid on Burnaby Campus of British Columbia Institute of Technology from 2007 onwards, as well as for establishing and leading an NSERC Pan-Canadian Strategic Research Network in Smart Microgrids, consisting of a large number of research-intensive universities (NSMG-Net) in Canada from 2010 to 2016, which trained hundreds of graduate students and published numerous peer-reviewed research papers. Dr. Farhangi retired from his academic and research appointment at British Columbia Institute of Technology (BCIT) in Sept 2022 to pursue his personal research interests.

<span class="mw-page-title-main">Smart thermostat</span>

Smart thermostats are Wi-Fi thermostats that can be used with home automation and are responsible for controlling a home's heating, ventilation, and air conditioning. They perform similar functions as a Programmable thermostat as they allow the user to control the temperature of their home throughout the day using a schedule, but also contain additional features, such as sensors and Wi-Fi connectivity, that improve upon the issues with programming.

Smart grid policy in the United States refers to legislation and other governmental orders influencing the development of smart grids in the United States.

The UCLA Smart Grid Energy Research Center (SMERC), located on the University of California Los Angeles (UCLA) campus, is an organization focused on developing the next generation of technologies and innovation for Smart Grid. SMERC partners with government agencies, technology providers, Department of Energy (DOE) research labs, universities, utilities, policymakers, electric vehicle manufacturers, and appliance manufacturers. These partnerships provide SMERC with diverse capabilities and exceptional, mature leadership.

Transactive energy refers to the economic and control techniques used to manage the flow or exchange of energy within an existing electric power system in regards to economic and market based standard values of energy. It is a concept that is used in an effort to improve the efficiency and reliability of the power system, pointing towards a more intelligent and interactive future for the energy industry.

Occupant-centric building controls or Occupant-centric controls (OCC) is a control strategy for the indoor environment, that specifically focuses on meeting the current needs of building occupants while decreasing building energy consumption. OCC can be used to control lighting and appliances, but is most commonly used to control heating, ventilation, and air conditioning (HVAC). OCC use real-time data collected on indoor environmental conditions, occupant presence and occupant preferences as inputs to energy system control strategies. By responding to real-time inputs, OCC is able to flexibly provide the proper level of energy services, such as heating and cooling, when and where it is needed by occupants. Ensuring that building energy services are provided in the right quantity is intended to improve occupant comfort while providing these services only at the right time and in the right location is intended to reduce overall energy use.

References

  1. "Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways (Brambley 2005)" (PDF). Archived from the original (PDF) on 2013-10-04. Retrieved 2023-09-02.
  2. "Energy Consumption Characteristics of Commercial Building HVAC SystemsVolume III: Energy Savings Potential (Roth 2002)" (PDF). Archived from the original (PDF) on 2013-10-04. Retrieved 2023-09-02.
  3. "Smart Plan B – Home Battery SoliTek Nova". www.solitek.eu. Retrieved 2024-04-08.
  4. "AGreatE Global Locations and BESS Distribution Offices". AGreatE. Retrieved 2024-04-08.
  5. "Demand response". IEA. Retrieved 2024-04-08.
  6. "EV Charging Electrical Energy Manager". Black Box Innovations. Retrieved 2021-10-27.
  7. "Home". GitHub. Retrieved 2023-07-25.
  8. "NEN-EN 50491-12-2:2022 en". www.nen.nl. Retrieved 2023-07-25.
  9. "CENELEC - CLC/TC 205". standards.cencenelec.eu. Retrieved 2023-07-25.
  10. S. G. Liasi and S. M. T. Bathaee, "Optimizing microgrid using demand response and electric vehicles connection to microgrid," 2017 Smart Grid Conference (SGC), Tehran, 2017, pp. 1-7.