Engineer to order is a production approach characterized by: [1]
To speed up delivery time, the adoption of concurrent engineering, integrated product team, and lean product development methodologies are used. The critical path methodology is also essential. To speed up the delivery time, many companies use customization approach (In SAP terminology it is called Variant configuration) where in, the most part of the BOM components and routing operation elements could be created automatically based on the design inputs received during quote/sales order stage. This approach speedup the BOM and routing creation process, there by help ETO companies to respond quickly to customer requirement.[ citation needed ]
Engineer to order environments must employ a flexible and adaptive, demand-driven approach to the manufacturing process. It is usually the right solution when details on a customer order are not provided and engineering development must be added to product lead time. [2]
ETO is a technique that is leveraged to boost sales and improve margins for those companies with customers needing solutions that are tailored to fit their own unique environment. It begins with selling product concepts that don’t have fixed designs and are expected to result in a new, unique end product. This could be any product, from enterprise software applications to special aircraft to a pair of jeans. But the typical ETO environment usually deals with the design and build of unique custom engineered complex machinery and industrial equipment - one in which there is heavy involvement of the following engineering disciplines; mechanical, electrical, mechatronics, software, manufacturing and systems engineering. The ETO company works with its customers to develop new products that satisfy the customer’s requirements and specifications.
The difference between the ETO approach to production and make to order products is that engineering original products to order includes the entire design process. In MTO companies typically have a fixed design and specifications to start with. The existing design is followed, even if the customer requests some customization of dimensions or materials. In engineering to meet unique customer orders, designs spring from collaboration with the customer, beginning with a need and a concept. Engineers do not know the final specifications, materials, or in software development, even the network or application platform until other primary concepts are ironed out. This is a much more creative process and requires a much closer relationship with clients, ultimately leading to a product that is unique.
Engineers don’t always follow a smooth flow from step to step even in ordinary manufacturing. Most manufacturing design decisions tends to be highly iterative. [3] It is common to create a design that meets customer approval, test it, make changes to meet specifications, and resubmit at certain stages or milestones in order for approval to proceed to the next stage. Engineer to order, due to its nature, is even more complex and client-centric. This requires on-going documentation, but the approach typically involves all of the following steps.
Given the unique nature of the delivered product, clients may accept certain quality risks as a consequence of meeting delivery dates. Testing and trial periods may also be limited by the nature of the product, the manufacturing required, and the metrics established for quality controls. As each product is essentially a one of a kind prototype, smaller companies on either the manufacturer or client side may not have the expertise or resources to implement use-cases, user testing, or future quality guidelines. In MTO, quality is often defined as a lack of defects, but must meet minimal levels defined in the specifications. In Engineer to Order there is no original design. Where possible, prior similar products may provide some guidelines as to testing and precision, but the idea of re-designing or modifying an existing design is necessarily a core requirement of the engineer to order concept. It does however reduce costs and time if one can use previous designs.
A work-breakdown structure (WBS) in project management and systems engineering is a deliverable-oriented breakdown of a project into smaller components. A work breakdown structure is a key project deliverable that organizes the team's work into manageable sections. The Project Management Body of Knowledge defines the work-breakdown structure as a "hierarchical decomposition of the total scope of work to be carried out by the project team to accomplish the project objectives and create the required deliverables."
Material requirements planning (MRP) is a production planning, scheduling, and inventory control system used to manage manufacturing processes. Most MRP systems are software-based, but it is possible to conduct MRP by hand as well.
A project manager is a professional in the field of project management. Project managers have the responsibility of the planning, procurement and execution of a project, in any undertaking that has a defined scope, defined start and a defined finish; regardless of industry. Project managers are first point of contact for any issues or discrepancies arising from within the heads of various departments in an organization before the problem escalates to higher authorities, as project representative.
Automotive engineering, along with aerospace engineering and naval architecture, is a branch of vehicle engineering, incorporating elements of mechanical, electrical, electronic, software, and safety engineering as applied to the design, manufacture and operation of motorcycles, automobiles, and trucks and their respective engineering subsystems. It also includes modification of vehicles. Manufacturing domain deals with the creation and assembling the whole parts of automobiles is also included in it. The automotive engineering field is research intensive and involves direct application of mathematical models and formulas. The study of automotive engineering is to design, develop, fabricate, and test vehicles or vehicle components from the concept stage to production stage. Production, development, and manufacturing are the three major functions in this field.
In systems engineering, information systems and software engineering, the systems development life cycle (SDLC), also referred to as the application development life cycle, is a process for planning, creating, testing, and deploying an information system. The SDLC concept applies to a range of hardware and software configurations, as a system can be composed of hardware only, software only, or a combination of both. There are usually six stages in this cycle: requirement analysis, design, development and testing, implementation, documentation, and evaluation.
In industry, product lifecycle management (PLM) is the process of managing the entire lifecycle of a product from its inception through the engineering, design and manufacture, as well as the service and disposal of manufactured products. PLM integrates people, data, processes, and business systems and provides a product information backbone for companies and their extended enterprises.
Process engineering is the understanding and application of the fundamental principles and laws of nature that allow humans to transform raw material and energy into products that are useful to society, at an industrial level. By taking advantage of the driving forces of nature such as pressure, temperature and concentration gradients, as well as the law of conservation of mass, process engineers can develop methods to synthesize and purify large quantities of desired chemical products. Process engineering focuses on the design, operation, control, optimization and intensification of chemical, physical, and biological processes. Process engineering encompasses a vast range of industries, such as agriculture, automotive, biotechnical, chemical, food, material development, mining, nuclear, petrochemical, pharmaceutical, and software development. The application of systematic computer-based methods to process engineering is "process systems engineering".
Product data management (PDM) should not be confused with product information management (PIM). PDM is the name of a business function within product lifecycle management (PLM) that denotes the management and publication of product data. In software engineering, this is known as version control. The goals of product data management include ensuring all stakeholders share a common understanding, that confusion during the execution of the processes is minimized, and that the highest standards of quality controls are maintained.
A design engineer is an engineer focused on the engineering design process in any of the various engineering disciplines and design disciplines like Human-Computer Interaction. Design engineers tend to work on products and systems that involve adapting and using complex scientific and mathematical techniques. The emphasis tends to be on utilizing engineering physics and other applied sciences to develop solutions for society.
Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability describes the ability of a system or component to function under stated conditions for a specified period of time. Reliability is closely related to availability, which is typically described as the ability of a component or system to function at a specified moment or interval of time.
Operations management is an area of management concerned with designing and controlling the process of production and redesigning business operations in the production of goods or services. It involves the responsibility of ensuring that business operations are efficient in terms of using as few resources as needed and effective in meeting customer requirements.
Computer-aided production engineering (CAPE) is a relatively new and significant branch of engineering. Global manufacturing has changed the environment in which goods are produced. Meanwhile, the rapid development of electronics and communication technologies has required design and manufacturing to keep pace.
The process of circuit design can cover systems ranging from complex electronic systems down to the individual transistors within an integrated circuit. One person can often do the design process without needing a planned or structured design process for simple circuits. Still, teams of designers following a systematic approach with intelligently guided computer simulation are becoming increasingly common for more complex designs. In integrated circuit design automation, the term "circuit design" often refers to the step of the design cycle which outputs the schematics of the integrated circuit. Typically this is the step between logic design and physical design.
A test engineer is a professional who determines how to create a process that would best test a particular product in manufacturing and related disciplines, in order to assure that the product meets applicable specifications. Test engineers are also responsible for determining the best way a test can be performed in order to achieve adequate test coverage. Often test engineers also serve as a liaison between manufacturing, design engineering, sales engineering and marketing communities as well.
An engineering change order (ECO), also called an engineering change notice (ECN), engineering change (EC), or engineering release notice(ERN), is an artifact used to implement changes to components or end products. The ECO is utilized to control and coordinate changes to product designs that evolve over time.
Production Part Approval Process (PPAP) is used in the automotive supply chain for establishing confidence in suppliers and their production processes. Actual measurements are taken from the parts produced and are used to complete the various test sheets of PPAP.
"All customer engineering design record and specification requirements are properly understood by the supplier and that the process has the potential to produce product consistently meeting these requirements during an actual production run at the quoted production rate." Version 4, 1 March 2006
Order fulfillment is in the most general sense the complete process from point of sales inquiry to delivery of a product to the customer. Sometimes, it describes the more narrow act of distribution or the logistics function. In the broader sense, it refers to the way firms respond to customer orders.
Digital Prototyping gives conceptual design, engineering, manufacturing, and sales and marketing departments the ability to virtually explore a complete product before it's built. Industrial designers, manufacturers, and engineers use Digital Prototyping to design, iterate, optimize, validate, and visualize their products digitally throughout the product development process. Innovative digital prototypes can be created via CAutoD through intelligent and near-optimal iterations, meeting multiple design objectives, identifying multiple figures of merit, and reducing development gearing and time-to-market. Marketers also use Digital Prototyping to create photorealistic renderings and animations of products prior to manufacturing. Companies often adopt Digital Prototyping with the goal of improving communication between product development stakeholders, getting products to market faster, and facilitating product innovation.
A specification often refers to a set of documented requirements to be satisfied by a material, design, product, or service. A specification is often a type of technical standard.
A glossary of terms relating to project management and consulting.