Erick James Weinberg | |
---|---|
Born | |
Alma mater | Manhattan College Harvard University |
Known for | Coleman–Weinberg potential Lee–Weinberg–Yi metric |
Scientific career | |
Fields | Theoretical physics |
Institutions | Columbia University |
Doctoral advisor | Sidney Coleman |
Erick J. Weinberg (born August 29, 1947) is a theoretical physicist and professor of physics at Columbia University.
Weinberg received his undergraduate degree from Manhattan College in 1968. He obtained his Ph.D. from Harvard University in 1973 [2] under the supervision of Sidney Coleman, with whom he discovered the Coleman–Weinberg mechanism for spontaneous symmetry breaking in quantum field theory. Weinberg works on various branches in high-energy theory, including black holes, vortices, Chern–Simons theory, magnetic monopoles in gauge theories and cosmic inflation. He also serves as the Editor of Physical Review D, as well as a visiting scholar of the Korea Institute for Advanced Study (KIAS). [3]
After receiving his doctorate, Weinberg went to the Institute for Advanced Study in Princeton, New Jersey as a postdoctoral researcher. In 1975, he became an assistant professor of physics at Columbia University. He was promoted to full professor in 1987. From 2002 to 2006, Weinberg served as the chair of Columbia University's physics department. Weinberg is still actively researching BPS monopoles and vacuum decay.
Weinberg has worked on various branches in theoretical high energy physics, including the theory of spontaneous symmetry breaking, inflation, the theory of supersymmetric solitons, and the theory of vacuum decay via the nucleation of quantum/thermal bubbles.
Spontaneous symmetry breaking occurs in a theory when the state with the lowest energy does not have as many symmetries as the theory itself, therefore one sees degenerate vacua connected by the quotient between the symmetry of the theory and the symmetry of the state, and the particle spectrum is classified by the symmetry group of the lowest energy state (vacuum). In the case that the quotient can be parametrized by the continuous parameter(s), the local fluctuations of these parameters can be regarded as bosonic excitations (if the symmetry is bosonic), usually called Goldstone boson, which has profound implications. When coupled to gauge fields, these bosons mix into the longitudinal polarizations of the gauge fields and give masses to the fields, this is how Higgs mechanism works.
Usually, the way to realize spontaneous symmetry breaking is to introduce a scalar field that has a tachyonic mass parameter, classically, then the classical vacuum is the solution that stays at the bottom of the potential, with the leading quantum contribution from the uncertainty principle, the vacuum can be viewed as a Gaussian wave packet around the lowest point of the potential.
The possibility that pointed out by Coleman and E.Weinberg is, even at the classical level one tunes the mass of the scalar field to be zero, quantum correction is able to modify the effective potential, turning the point that enjoys the whole symmetry of the theory from a local minimum to a maximum, and generate new minima (vacuum) at configurations with less symmetry. Therefore spontaneous symmetry breaking can have a pure quantum origin.
Another important point about the mechanism is, the potential remains flat with the quantum correction, if we introduce an appropriate counter-term to cancel the mass renormalization, with the minimum/maximum transition induced by a log-like term,
Therefore it gives a natural arena for the idea of slow-roll inflation introduced by Linde, Albrecht and Steinhardt, which is still playing the dominant role among the theories of early universe.
In the original paper of Coleman-Weinberg, as well as in the thesis of Erick Weinberg, Coleman and Weinberg discussed the renormalization of the couplings in various theories, and introduced the concept of "dimensional transmutation"—the running of coupling constants renders some coupling determined by an arbitrary energy scale, therefore although classically one starts from a theory in which there are several arbitrary dimensionless constants, one ends up with a theory with an arbitrary dimensionful parameter.
In a paper with Alan Guth, [4] Erick Weinberg discussed the possibility of ending the inflation with thermalization of vacuum bubbles in a cosmological phase transition.
The original proposal of inflation is, the exponentially growing phase ends via the nucleation of Coleman-de Luccia bubbles with a low vacuum energy, these bubbles collide and thermalize, leaving a homogeneous universe with high temperature. However, as the exponential growth of the near-de Sitter universe dilutes the bubbles nucleated, it is not obvious that the bubbles will really coalesse, in fact Guth and Weinberg proved the following statements:
The second statement suggests in a fixed coordinate any chosen bubble would be the largest in its own cluster, but this is a coordinate-dependent statement, after choosing the bubble, one can always find another coordinate in which there are bigger bubbles in the same cluster.
According to these statements, if the nucleation rate of bubbles is small, we will end up with bubbles that form clusters and will not collide with each other, with the heat release from vacuum decay stored in the domain-walls, quite different from what the hot Big-Bang starts from.
This problem called "graceful exit problem", discussed independently later by Hawking, Moss and Stewart, [5] then solved by the proposal of new inflation by Linde, [6] Abrecht and Steinhardt, [7] which makes use of Coleman-Weinberg mechanism to generate the inflation potential that satisfies slow-roll conditions.
The existence of magnetic monopoles has long been an interesting and profound possibility. Such solitons could potentially explain the quantization of electric charge, as pointed out by Dirac; they can arise as the classical solutions in gauge theories, as pointed out by Polyakov and 't Hooft; and the inability to detect them is one of the motivations of proposing a period of inflation before the hot Big-Bang phase.
The dynamics of magnetic monopole solutions is especially simple when the theory is at BPS limit—when it can be extended to include fermionic sectors to form a supersymmetric theory. In these cases, the multi-monopole solutions can be explicitly obtained, the monopoles in a system are basically free because the interaction mediated by Higgs field is cancelled by the gauge interaction. in the case of a maximally broken gauge group into , the multi-monopole solution can be viewed as weakly interacting particles, each carrying a phase factor, therefore when considering the low energy processes the total number of degrees of freedom for n monopoles is 4n, in 4-dimensional spacetime—3 for spatial position and one for the phase factor. The dynamics can be reduced to the motion inside a 4n dimensional space with a nontrivial metric from the interactions among the monopoles, so called "moduli space approximation".
Erick Weinberg, with Kimyeong Lee and Piljin Yi, did a calculation for the moduli space metric in the case of well-separated monopoles, with an arbitrary large compact gauge group maximally broken into products of U(1)'s, and argued that in some certain cases the metric can be exact—valid for crowded monopole system. This calculation is known as "Lee–Weinberg–Yi metric"
This section is empty. You can help by adding to it. (January 2013) |
In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch is believed to have lasted from 10−36 seconds to between 10−33 and 10−32 seconds after the Big Bang. Following the inflationary period, the universe continued to expand, but at a slower rate. The re-acceleration of this slowing expansion due to dark energy began after the universe was already over 7.7 billion years old.
In particle physics, a magnetic monopole is a hypothetical elementary particle that is an isolated magnet with only one magnetic pole. A magnetic monopole would have a net north or south "magnetic charge". Modern interest in the concept stems from particle theories, notably the grand unified and superstring theories, which predict their existence. The known elementary particles that have electric charge are electric monopoles.
Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry.
Alan Harvey Guth is an American theoretical physicist and cosmologist who is the Victor Weisskopf Professor of Physics at the Massachusetts Institute of Technology. Along with Alexei Starobinsky and Andrei Linde, he won the 2014 Kavli Prize "for pioneering the theory of cosmic inflation." Guth's research focuses on elementary particle theory and how particle theory is applicable to the early universe.
In particle and condensed matter physics, Goldstone bosons or Nambu–Goldstone bosons (NGBs) are bosons that appear necessarily in models exhibiting spontaneous breakdown of continuous symmetries. They were discovered by Yoichiro Nambu in particle physics within the context of the BCS superconductivity mechanism, and subsequently elucidated by Jeffrey Goldstone, and systematically generalized in the context of quantum field theory. In condensed matter physics such bosons are quasiparticles and are known as Anderson–Bogoliubov modes.
In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W−, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) which permeates all of space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons it interacts with to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature. The view of the Higgs mechanism as involving spontaneous symmetry breaking of a gauge symmetry is technically incorrect since by Elitzur's theorem gauge symmetries can never be spontaneously broken. Rather, the Fröhlich–Morchio–Strocchi mechanism reformulates the Higgs mechanism in an entirely gauge invariant way, generally leading to the same results.
Sidney Richard Coleman was an American theoretical physicist noted for his research in high-energy theoretical physics.
Andrei Dmitriyevich Linde is a Russian-American theoretical physicist and the Harald Trap Friis Professor of Physics at Stanford University.
In quantum field theory, a false vacuum is a hypothetical vacuum that is relatively stable, but not in the most stable state possible. In this condition it is called metastable. It may last for a very long time in this state, but could eventually decay to the more stable one, an event known as false vacuum decay. The most common suggestion of how such a decay might happen in our universe is called bubble nucleation – if a small region of the universe by chance reached a more stable vacuum, this "bubble" would spread.
Alternative models to the Standard Higgs Model are models which are considered by many particle physicists to solve some of the Higgs boson's existing problems. Two of the most currently researched models are quantum triviality, and Higgs hierarchy problem.
A conformal anomaly, scale anomaly, trace anomaly or Weyl anomaly is an anomaly, i.e. a quantum phenomenon that breaks the conformal symmetry of the classical theory.
The QCD vacuum is the quantum vacuum state of quantum chromodynamics (QCD). It is an example of a non-perturbative vacuum state, characterized by non-vanishing condensates such as the gluon condensate and the quark condensate in the complete theory which includes quarks. The presence of these condensates characterizes the confined phase of quark matter.
Eternal inflation is a hypothetical inflationary universe model, which is itself an outgrowth or extension of the Big Bang theory.
The Coleman–Weinberg model represents quantum electrodynamics of a scalar field in four-dimensions. The Lagrangian for the model is
The 1964 PRL symmetry breaking papers were written by three teams who proposed related but different approaches to explain how mass could arise in local gauge theories. These three papers were written by: Robert Brout and François Englert; Peter Higgs; and Gerald Guralnik, C. Richard Hagen, and Tom Kibble (GHK). They are credited with the theory of the Higgs mechanism and the prediction of the Higgs field and Higgs boson. Together, these provide a theoretical means by which Goldstone's theorem can be avoided. They showed how gauge bosons can acquire non-zero masses as a result of spontaneous symmetry breaking within gauge invariant models of the universe.
In physical cosmology, warm inflation is one of two dynamical realizations of cosmological inflation. The other is the standard scenario, sometimes called cold inflation.
In theoretical physics, a mass generation mechanism is a theory that describes the origin of mass from the most fundamental laws of physics. Physicists have proposed a number of models that advocate different views of the origin of mass. The problem is complicated because the primary role of mass is to mediate gravitational interaction between bodies, and no theory of gravitational interaction reconciles with the currently popular Standard Model of particle physics.
The Kibble–Zurek mechanism (KZM) describes the non-equilibrium dynamics and the formation of topological defects in a system which is driven through a continuous phase transition at finite rate. It is named after Tom W. B. Kibble, who pioneered the study of domain structure formation through cosmological phase transitions in the early universe, and Wojciech H. Zurek, who related the number of defects it creates to the critical exponents of the transition and to its rate—to how quickly the critical point is traversed.
In physical cosmology, the graceful exit problem refers to an inherent flaw in the initial proposal of the inflationary universe theory proposed by Alan Guth in 1981.
A cosmological phase transition is a physical process, whereby the overall state of matter changes together across the whole universe. The success of the Big Bang model led researchers to conjecture possible cosmological phase transitions taking place in the very early universe, at a time when it was much hotter and denser than today.