Essential monomorphism

Last updated

In mathematics, specifically category theory, an essential monomorphism is a monomorphism i in an abelian category C such that for a morphism f in C, the composition is a monomorphism only when f is a monomorphism. [1] Essential monomorphisms in a category of modules are those whose image is an essential submodule of the codomain. An injective hull of an object A is an essential monomorphism from A to an injective object. [1]

Related Research Articles

<span class="mw-page-title-main">Endomorphism</span> Self-self morphism

In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space V is a linear map f: VV, and an endomorphism of a group G is a group homomorphism f: GG. In general, we can talk about endomorphisms in any category. In the category of sets, endomorphisms are functions from a set S to itself.

In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if R and S are rings, then a ring homomorphism is a function f : RS such that f is:

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties.

<span class="mw-page-title-main">Monomorphism</span> Injective homomorphism

In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from X to Y is often denoted with the notation .

In category theory, an epimorphism is a morphism f : XY that is right-cancellative in the sense that, for all objects Z and all morphisms g1, g2: YZ,

In mathematics, especially homological algebra and other applications of abelian category theory, the five lemma is an important and widely used lemma about commutative diagrams. The five lemma is not only valid for abelian categories but also works in the category of groups, for example.

<span class="mw-page-title-main">Exact sequence</span> Sequence of homomorphisms such that each kernel equals the preceding image

An exact sequence is a sequence of morphisms between objects such that the image of one morphism equals the kernel of the next.

<span class="mw-page-title-main">Homological algebra</span> Branch of mathematics

Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

In category theory and its applications to other branches of mathematics, kernels are a generalization of the kernels of group homomorphisms, the kernels of module homomorphisms and certain other kernels from algebra. Intuitively, the kernel of the morphism f : XY is the "most general" morphism k : KX that yields zero when composed with f.

In mathematics, certain functors may be derived to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics.

In mathematics, the category Ab has the abelian groups as objects and group homomorphisms as morphisms. This is the prototype of an abelian category: indeed, every small abelian category can be embedded in Ab.

In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is dual to that of projective modules. Injective modules were introduced in and are discussed in some detail in the textbook.

In mathematics, especially in the field of category theory, the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of model categories. The dual notion is that of a projective object.

In category theory, a branch of mathematics, a subobject is, roughly speaking, an object that sits inside another object in the same category. The notion is a generalization of concepts such as subsets from set theory, subgroups from group theory, and subspaces from topology. Since the detailed structure of objects is immaterial in category theory, the definition of subobject relies on a morphism that describes how one object sits inside another, rather than relying on the use of elements.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes. The concept was introduced by Daniel G. Quillen.

In mathematics, specifically module theory, given a ring R and an R-module M with a submodule N, the module M is said to be an essential extension of N if for every submodule H of M,

In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings and whose morphisms are ring homomorphisms. Like many categories in mathematics, the category of rings is large, meaning that the class of all rings is proper.

In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in analysis and topology, continuous functions, and so on.

In the branch of mathematics called category theory, a hopfian object is an object A such that any epimorphism of A onto A is necessarily an automorphism. The dual notion is that of a cohopfian object, which is an object B such that every monomorphism from B into B is necessarily an automorphism. The two conditions have been studied in the categories of groups, rings, modules, and topological spaces.

References

  1. 1 2 Hashimoto, Mitsuyasu (November 2, 2000). Auslander-Buchweitz Approximations of Equivariant Modules. Cambridge University Press. p. 19. ISBN   9780521796965 . Retrieved February 3, 2024 via Google Books.