In number theory, Euler's conjecture is a disproved conjecture related to Fermat's Last Theorem. It was proposed by Leonhard Euler in 1769. It states that for all integers n and k greater than 1, if the sum of n many kth powers of positive integers is itself a kth power, then n is greater than or equal to k:
The conjecture represents an attempt to generalize Fermat's Last Theorem, which is the special case n = 2: if then 2 ≥ k.
Although the conjecture holds for the case k = 3 (which follows from Fermat's Last Theorem for the third powers), it was disproved for k = 4 and k = 5. It is unknown whether the conjecture fails or holds for any value k ≥ 6.
Euler was aware of the equality 594 + 1584 = 1334 + 1344 involving sums of four fourth powers; this, however, is not a counterexample because no term is isolated on one side of the equation. He also provided a complete solution to the four cubes problem as in Plato's number 33 + 43 + 53 = 63 or the taxicab number 1729. [1] [2] The general solution of the equation is
where a, b and are any rational numbers.
Euler's conjecture was disproven by L. J. Lander and T. R. Parkin in 1966 when, through a direct computer search on a CDC 6600, they found a counterexample for k = 5. [3] This was published in a paper comprising just two sentences. [3] A total of three primitive (that is, in which the summands do not all have a common factor) counterexamples are known: (Lander & Parkin, 1966); (Scher & Seidl, 1996); (Frye, 2004).
In 1988, Noam Elkies published a method to construct an infinite sequence of counterexamples for the k = 4 case. [4] His smallest counterexample was
A particular case of Elkies' solutions can be reduced to the identity [5] [6] where This is an elliptic curve with a rational point at v1 = −31/467. From this initial rational point, one can compute an infinite collection of others. Substituting v1 into the identity and removing common factors gives the numerical example cited above.
In 1988, Roger Frye found the smallest possible counterexample for k = 4 by a direct computer search using techniques suggested by Elkies. This solution is the only one with values of the variables below 1,000,000. [7]
In 1967, L. J. Lander, T. R. Parkin, and John Selfridge conjectured [8] that if
where ai ≠ bj are positive integers for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, then m + n ≥ k. In the special case m = 1, the conjecture states that if
(under the conditions given above) then n ≥ k − 1.
The special case may be described as the problem of giving a partition of a perfect power into few like powers. For k = 4, 5, 7, 8 and n = k or k − 1, there are many known solutions. Some of these are listed below.
See OEIS: A347773 for more data.
(Lander & Parkin, 1966); [10] [11] [12] (Lander, Parkin, Selfridge, smallest, 1967); [8] (Lander, Parkin, Selfridge, second smallest, 1967); [8] (Sastry, 1934, third smallest). [8]
It has been known since 2002 that there are no solutions for k = 6 whose final term is ≤ 730000. [13]
(M. Dodrill, 1999). [14]
(S. Chase, 2000). [15]
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, for which only integer solutions are of interest. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.
In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer coefficients. The best-known transcendental numbers are π and e. The quality of a number being transcendental is called transcendence.
Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
The abc conjecture is a conjecture in number theory that arose out of a discussion of Joseph Oesterlé and David Masser in 1985. It is stated in terms of three positive integers and that are relatively prime and satisfy . The conjecture essentially states that the product of the distinct prime factors of is usually not much smaller than . A number of famous conjectures and theorems in number theory would follow immediately from the abc conjecture or its versions. Mathematician Dorian Goldfeld described the abc conjecture as "The most important unsolved problem in Diophantine analysis".
In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation whose coefficients are functions of the independent variable that can be written using the basic operations of addition, subtraction, multiplication, and division. This is in contrast to an algebraic function.
A powerful number is a positive integer m such that for every prime number p dividing m, p2 also divides m. Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a2b3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full. Paul Erdős and George Szekeres studied such numbers and Solomon W. Golomb named such numbers powerful.
144 is the natural number following 143 and preceding 145. 144 is a dozen dozens, or one gross. 144 is the twelfth Fibonacci number and the only nontrivial of these that is square.
In mathematics, the nth taxicab number, typically denoted Ta(n) or Taxicab(n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. The most famous taxicab number is 1729 = Ta(2) = 13 + 123 = 93 + 103, also known as the Hardy-Ramanujan number.
In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So:
The Beal conjecture is the following conjecture in number theory:
In mathematics, in the field of number theory, the Ramanujan–Nagell equation is an equation between a square number and a number that is seven less than a power of two. It is an example of an exponential Diophantine equation, an equation to be solved in integers where one of the variables appears as an exponent.
The Erdős–Straus conjecture is an unproven statement in number theory. The conjecture is that, for every integer that is 2 or more, there exist positive integers , , and for which In other words, the number can be written as a sum of three positive unit fractions.
In mathematics, Hall's conjecture is an open question on the differences between perfect squares and perfect cubes. It asserts that a perfect square y2 and a perfect cube x3 that are not equal must lie a substantial distance apart. This question arose from consideration of the Mordell equation in the theory of integer points on elliptic curves.
A Pythagorean quadruple is a tuple of integers a, b, c, and d, such that a2 + b2 + c2 = d2. They are solutions of a Diophantine equation and often only positive integer values are considered. However, to provide a more complete geometric interpretation, the integer values can be allowed to be negative and zero (thus allowing Pythagorean triples to be included) with the only condition being that d > 0. In this setting, a Pythagorean quadruple (a, b, c, d) defines a cuboid with integer side lengths |a|, |b|, and |c|, whose space diagonal has integer length d; with this interpretation, Pythagorean quadruples are thus also called Pythagorean boxes. In this article we will assume, unless otherwise stated, that the values of a Pythagorean quadruple are all positive integers.
In mathematics and statistics, sums of powers occur in a number of contexts:
The Jacobi–Madden equation is the Diophantine equation
In number theory, the Lander, Parkin, and Selfridge conjecture concerns the integer solutions of equations which contain sums of like powers. The equations are generalisations of those considered in Fermat's Last Theorem. The conjecture is that if the sum of some k-th powers equals the sum of some other k-th powers, then the total number of terms in both sums combined must be at least k.
In arithmetic and algebra, the fifth power or sursolid of a number n is the result of multiplying five instances of n together:
In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together. So:
In the mathematics of sums of powers, it is an open problem to characterize the numbers that can be expressed as a sum of three cubes of integers, allowing both positive and negative cubes in the sum. A necessary condition for an integer to equal such a sum is that cannot equal 4 or 5 modulo 9, because the cubes modulo 9 are 0, 1, and −1, and no three of these numbers can sum to 4 or 5 modulo 9. It is unknown whether this necessary condition is sufficient.