Eurostar E3000

Last updated

A Eurostar 3000 satellite made in 2000 Eurostar 3000 satellite 1r.jpg
A Eurostar 3000 satellite made in 2000

The Eurostar E3000 is a generic satellite model most commonly used for commercial and military communications satellites manufactured by Airbus Defence and Space (formerly Astrium). It is a member of Airbus Defence and Space's Eurostar family. It utilises a chemical, bi-propellant propulsion system for orbit raising and on-station manoeuvres with an optional plasma propulsion system (PPS). [1] The PPS harnesses the Newtonian effect as a result of the ionisation of xenon gas employed by the use of Hall effect plasma thrusters. This system is most commonly used for north–south station-keeping. The E3000 was the first commercial satellite family to use lithium–ion batteries rather than the older nickel-based technologies for power supply during eclipses.

Contents

The E3000 bus can be modified extensively to meet customer requirements, but most of the E3000 satellites have a launch mass of between 4,500 and 6,000 kg (9,900 and 13,200 lb), and solar arrays between 35 and 45 m (115 and 148 ft) providing between nine and sixteen kilowatts at end of life. They tend to feature between 50 and 90 transponders, most often in the Ku-band and C-band.

There have been 52 satellites built around the E3000 platform including ANASIS 2, Hispasat's Amazonas 1 and 2, Arabsat-5A, -5B, and -5C, Astra 1M, 1N, 2E, 2F, 2G, 3B and 5B, Eutelsat's W3A and Hot Bird 8–10, Intelsat 10-02, KA-SAT, Atlantic Bird 7, 70B Telesat's Anik F1R, F3 and Nimiq-4, Skynet 5A–C and the Inmarsat 4-series of satellites. [2] Each of the three Inmarsat 4 in service has a large deployable reflector as the main antenna.

In March 2015, Airbus Defence and Space received a delivery of new 3D-printed brackets for mounting telemetry and tele-command antennas, being the first space-qualified 3D-printed component of its kind. [3]

Eurostar E3000EOR

Also in March 2015, Airbus signed a contract with Snecma for 5-kilowatt PPS5000 Hall-effect thrusters for the E3000 Electric Orbit Raising (E3000EOR) variant of the satellite bus. New thrusters would allow reducing the weight of a satellite by up to 40%., [4] as Türksat 5A and Türksat 5B

Eurostar Neo

An improved model based on the E3000 called the Eurostar Neo was announced in 2017, offering electric, hybrid, or chemical propulsion, in addition to a scalable power range of 7 kW to 25 kW. [5]

Related Research Articles

<span class="mw-page-title-main">Spacecraft propulsion</span> Method used to accelerate spacecraft

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry.

<span class="mw-page-title-main">Hall-effect thruster</span> Type of electric propulsion system

In spacecraft propulsion, a Hall-effect thruster (HET) is a type of ion thruster in which the propellant is accelerated by an electric field. Hall-effect thrusters are sometimes referred to as Hall thrusters or Hall-current thrusters. Hall-effect thrusters use a magnetic field to limit the electrons' axial motion and then use them to ionize propellant, efficiently accelerate the ions to produce thrust, and neutralize the ions in the plume. The Hall-effect thruster is classed as a moderate specific impulse space propulsion technology and has benefited from considerable theoretical and experimental research since the 1960s.

<span class="mw-page-title-main">Ion thruster</span> Spacecraft engine that generates thrust by generating a jet of ions

An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. It creates thrust by accelerating ions using electricity.

<span class="mw-page-title-main">Magnetoplasmadynamic thruster</span> Form of electrically powered spacecraft propulsion

A magnetoplasmadynamic (MPD) thruster (MPDT) is a form of electrically powered spacecraft propulsion which uses the Lorentz force to generate thrust. It is sometimes referred to as Lorentz Force Accelerator (LFA) or MPD arcjet.

<span class="mw-page-title-main">Skynet (satellite)</span> Communications satellite

Skynet is a family of military communications satellites, now operated by Airbus Defence and Space on behalf of the United Kingdom's Ministry of Defence (MoD). They provide strategic and tactical communication services to the branches of the British Armed Forces, the British intelligence agencies, some UK government departments and agencies, and to allied governments. Since 2015 when Skynet coverage was extended eastward, and in conjunction with an Anik G1 satellite module over America, Skynet offers near global coverage.

<span class="mw-page-title-main">Spacebus</span> Brand of satellite bus

Spacebus is a satellite bus produced at the Cannes Mandelieu Space Center in France by Thales Alenia Space. Spacebuses are typically used for geostationary communications satellites, and seventy-four have been launched since development started in the 1980s. Spacebus was originally produced by Aérospatiale and later passed to Alcatel Alenia Space. In 2006, it was sold to Thales Group as Thales Alenia Space.

<span class="mw-page-title-main">Plasma propulsion engine</span> Type of electric propulsion

A plasma propulsion engine is a type of electric propulsion that generates thrust from a quasi-neutral plasma. This is in contrast with ion thruster engines, which generate thrust through extracting an ion current from the plasma source, which is then accelerated to high velocities using grids/anodes. These exist in many forms. However, in the scientific literature, the term "plasma thruster" sometimes encompasses thrusters usually designated as "ion engines".

<span class="mw-page-title-main">Spacecraft electric propulsion</span> Type of space propulsion

Spacecraft electric propulsion is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generate thrust to modify the velocity of a spacecraft in orbit. The propulsion system is controlled by power electronics.

<span class="mw-page-title-main">PPS-1350</span>

PPS-1350 is a Hall-effect thruster, a kind of ion propulsion system for spacecraft. It was used in the SMART-1 mission to the moon and one geostationary satellites: Inmarsat-4A F4.

<span class="mw-page-title-main">Boeing 702</span>

Boeing 702 is a communication satellite bus family designed and manufactured by the Boeing Satellite Development Center, and flown from the late-1990s into the 2020s. It covers satellites massing from 1,500 kg (3,300 lb) to 6,100 kg (13,400 lb) with power outputs from 3 to 18 kW and can carry up to approximately 100 high-power transponders.

<span class="mw-page-title-main">Alphabus</span>

Alphabus is a family of heavy geostationary communications satellites developed by a joint venture between Thales Alenia Space and EADS Astrium Satellites in France, with support of the Centre national d'études spatiales (CNES), the French space agency and the European Space Agency (ESA).

<span class="mw-page-title-main">OKB Fakel</span> Subsidiary of Roscosmos

EDB Fakel is a Russian electric propulsion system development company. It is located in Kaliningrad in Kaliningrad Oblast. It was founded in 1955 as a Propulsion laboratory of the Soviet Academy of Sciences; in 1962 it obtained status of Design Bureau, OKB.

Eurostar is a satellite bus made by Airbus Defence and Space (formerly Astrium, and before 1994, British Aerospace, and Matra Marconi Space which has been used for a series of spacecraft providing telecommunications services in geosynchronous orbit. More than 70 Eurostar satellites have been ordered to date, of which more than 55 have been successfully launched since October 1990 and have proven highly reliable in operational service. In December 2013, the Eurostar satellites accumulated 500 years of successful operations in orbit. The Eurostar spacecraft series is designed for a variety of telecommunications needs including fixed services and broadcast, mobile services, broadband and secured communications.

<span class="mw-page-title-main">Busek</span> American spacecraft propulsion company

Busek Co. Inc. is an American spacecraft propulsion company that builds thrusters, electronics, and various systems for spacecraft.

<span class="mw-page-title-main">Türksat 5A</span> Turkish communications satellite

Türksat 5A, is a Turkish communications satellite, operated by Türksat A.Ş. for commercial and military purposes.

<span class="mw-page-title-main">SES-10</span> Geostationary communications satellite

SES-10, is a geostationary communications satellite awarded in February 2014, owned and operated by SES S.A. and designed and manufactured by Airbus Defence and Space on the Eurostar-3000 satellite bus. It is positioned at the 67° West position thanks to an agreement with the Andean Community to use the Simón Bolivar-2 satellite network. It replaces AMC-3 and AMC-4 to provide enhanced coverage and significant capacity expansion.

Türksat 5B is a Turkish geostationary high-throughput (HTS) communications satellite of Türksat A.Ş. developed for military and commercial purposes.

Inmarsat-6 F1 is a communications satellite to be operated by the British satellite operator Inmarsat and designed and manufactured by Airbus Defence and Space on the Eurostar 3000EOR satellite bus. Part of the Inmarsat-6 satellite fleet, it will be Inmarsat's first dual-payload satellite, with capabilities in both L-band (ELERA) and Ka-band. Claimed to be the largest and most sophisticated commercial telecommunications satellite ever launched, as the first of two such vehicles, it was placed into supersynchronous transfer orbit on 22 December 2021.

Microwave electrothermal thruster, also known as MET, is a propulsion device that converts microwave energy into thermal energy. These thrusters are predominantly used in spacecraft propulsion, more specifically to adjust the spacecraft’s position and orbit. A MET sustains and ignites a plasma in a propellant gas. This creates a heated propellant gas which in turn changes into thrust due to the expansion of the gas going through the nozzle. A MET’s heating feature is like one of an arc-jet ; however, due to the free-floating plasma, there are no problems with the erosion of metal electrodes, and therefore the MET is more efficient.

Eutelsat 172B is a French communications satellite built by Airbus Defence and Space and operated by Eutelsat Communications. Launched on June 1, 2017, it has an expected service life of 15 years. Its orbit along with Eutelsat 172A allows it to cover the Asia-Pacific region, providing enhanced broadband and broadcast services.

References

  1. 26th AIAA International Communication Satellite Systems Conference 2008: June 10-12, 2008, San Diego, California. American Institute of Aeronautics and Astronautics. Red Hook, NY: Printed from e-media with permission by Curran Associates. 2008. p. 340. ISBN   978-1-60560-471-8. OCLC   298571190.{{cite book}}: CS1 maint: others (link)
  2. Ng, Jr (15 June 2020). "South Korea's first dedicated MilSat nears launch". Asian Military Review. Retrieved 11 July 2020.
  3. "Airbus Defence and Space Receives 3-D Printed Satellite Parts". Satellite Today. 20 March 2015. Retrieved 1 August 2015.
  4. "Snecma Receives Follow-on Contract from Airbus for All-Electric Thrusters". Satellite Today. 25 March 2015. Retrieved 1 August 2015.
  5. "Eurostar". Airbus Defence & Space. Archived from the original on 9 October 2020. Retrieved 9 October 2020.