Evolutionary suicide

Last updated

Evolutionary suicide is an evolutionary phenomenon in which the process of adaptation causes the population to become extinct. [1] It provides an alternative explanation for extinction, which is due to misadaptation rather than failure to adapt. [1]

Contents

For example, individuals might be selected to destroy their own food (e.g. switch from eating mature plants to seedlings), and thereby deplete their food plant's population. Selection on individuals can theoretically produce adaptations that threaten the survival of the population. [2] Much of the research on evolutionary suicide has used the mathematical modeling technique adaptive dynamics, in which genetic changes are studied together with population dynamics. This allows the model to predict how population density will change as a given so called kamikaze mutant with a certain phenotypic trait invades the population. [1] At first, a kamikaze mutant has an advantage in reproduction, but once it spreads throughout the population, the population collapses. [1]

Evolutionary suicide has also been referred to as Darwinian extinction, [2] evolution to extinction [3] and evolutionary collapse. [4] The idea is similar in concept to the tragedy of the commons and the tendency of the rate of profit to fall, namely that they are all examples of an accumulation of individual changes leading to a collective disaster such that it negates those individual changes.

Many adaptations have apparently negative effects on population dynamics, for example infanticide by male lions, or the production of toxins by bacteria. However, empirically establishing that an extinction event was unambiguously caused by the process of adaptation is not a trivial task.

See also

Related Research Articles

<span class="mw-page-title-main">Ecology</span> Study of organisms and their environment

Ecology is the natural science of the relationships among living organisms and their environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere levels. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history.

<span class="mw-page-title-main">Theoretical ecology</span> Scientific discipline

Theoretical ecology is the scientific discipline devoted to the study of ecological systems using theoretical methods such as simple conceptual models, mathematical models, computational simulations, and advanced data analysis. Effective models improve understanding of the natural world by revealing how the dynamics of species populations are often based on fundamental biological conditions and processes. Further, the field aims to unify a diverse range of empirical observations by assuming that common, mechanistic processes generate observable phenomena across species and ecological environments. Based on biologically realistic assumptions, theoretical ecologists are able to uncover novel, non-intuitive insights about natural processes. Theoretical results are often verified by empirical and observational studies, revealing the power of theoretical methods in both predicting and understanding the noisy, diverse biological world.

<span class="mw-page-title-main">Predation</span> Biological interaction

Predation is a biological interaction where one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation and parasitoidism. It is distinct from scavenging on dead prey, though many predators also scavenge; it overlaps with herbivory, as seed predators and destructive frugivores are predators.

<span class="mw-page-title-main">Three-spined stickleback</span> Species of fish

The three-spined stickleback is a fish native to most inland and coastal waters north of 30°N. It has long been a subject of scientific study for many reasons. It shows great morphological variation throughout its range, ideal for questions about evolution and population genetics. Many populations are anadromous and very tolerant of changes in salinity, a subject of interest to physiologists. It displays elaborate breeding behavior and it can be social making it a popular subject of inquiry in fish ethology and behavioral ecology. Its antipredator adaptations, host-parasite interactions, sensory physiology, reproductive physiology, and endocrinology have also been much studied. Facilitating these studies is the fact that the three-spined stickleback is easy to find in nature and easy to keep in aquaria.

<span class="mw-page-title-main">Polymorphism (biology)</span> Occurrence of two or more clearly different morphs or forms in the population of a species

In biology, polymorphism is the occurrence of two or more clearly different morphs or forms, also referred to as alternative phenotypes, in the population of a species. To be classified as such, morphs must occupy the same habitat at the same time and belong to a panmictic population.

<span class="mw-page-title-main">Index of evolutionary biology articles</span>

This is a list of topics in evolutionary biology.

In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the population during that process. Thirdly, it is a phenotypic trait or adaptive trait, with a functional role in each individual organism, that is maintained and has evolved through natural selection.

<span class="mw-page-title-main">Metapopulation</span> Group of separated yet interacting ecological populations

A metapopulation consists of a group of spatially separated populations of the same species which interact at some level. The term metapopulation was coined by Richard Levins in 1969 to describe a model of population dynamics of insect pests in agricultural fields, but the idea has been most broadly applied to species in naturally or artificially fragmented habitats. In Levins' own words, it consists of "a population of populations".

<span class="mw-page-title-main">Evolutionary ecology</span> Interaction of biology and evolution

Evolutionary ecology lies at the intersection of ecology and evolutionary biology. It approaches the study of ecology in a way that explicitly considers the evolutionary histories of species and the interactions between them. Conversely, it can be seen as an approach to the study of evolution that incorporates an understanding of the interactions between the species under consideration. The main subfields of evolutionary ecology are life history evolution, sociobiology, the evolution of interspecific interactions and the evolution of biodiversity and of ecological communities.

<span class="mw-page-title-main">Disruptive selection</span> Natural selection for extreme trait values over intermediate ones

In evolutionary biology, disruptive selection, also called diversifying selection, describes changes in population genetics in which extreme values for a trait are favored over intermediate values. In this case, the variance of the trait increases and the population is divided into two distinct groups. In this more individuals acquire peripheral character value at both ends of the distribution curve.

The Allee effect is a phenomenon in biology characterized by a correlation between population size or density and the mean individual fitness of a population or species.

The Red Queen's hypothesis is a hypothesis in evolutionary biology proposed in 1973, that species must constantly adapt, evolve, and proliferate in order to survive while pitted against ever-evolving opposing species. The hypothesis was intended to explain the constant (age-independent) extinction probability as observed in the paleontological record caused by co-evolution between competing species; however, it has also been suggested that the Red Queen hypothesis explains the advantage of sexual reproduction at the level of individuals, and the positive correlation between speciation and extinction rates in most higher taxa.

Source–sink dynamics is a theoretical model used by ecologists to describe how variation in habitat quality may affect the population growth or decline of organisms.

Evolutionary invasion analysis, also known as adaptive dynamics, is a set of mathematical modeling techniques that use differential equations to study the long-term evolution of traits in asexually and sexually reproducing populations. It rests on the following three assumptions about mutation and population dynamics:

  1. Mutations are infrequent. The population can be assumed to be at equilibrium when a new mutant arises.
  2. The number of individuals with the mutant trait is initially negligible in the large, established resident population.
  3. Mutant phenotypes are only slightly different from the resident phenotype.

Ecological traps are scenarios in which rapid environmental change leads organisms to prefer to settle in poor-quality habitats. The concept stems from the idea that organisms that are actively selecting habitat must rely on environmental cues to help them identify high-quality habitat. If either the habitat quality or the cue changes so that one does not reliably indicate the other, organisms may be lured into poor-quality habitat.

The term evolutionary trap has retained several definitions associated with different biological disciplines.

Island ecology is the study of island organisms and their interactions with each other and the environment. Islands account for nearly 1/6 of earth’s total land area, yet the ecology of island ecosystems is vastly different from that of mainland communities. Their isolation and high availability of empty niches lead to increased speciation. As a result, island ecosystems comprise 30% of the world’s biodiversity hotspots, 50% of marine tropical diversity, and some of the most unusual and rare species. Many species still remain unknown.

Microorganisms engage in a wide variety of social interactions, including cooperation. A cooperative behavior is one that benefits an individual other than the one performing the behavior. This article outlines the various forms of cooperative interactions seen in microbial systems, as well as the benefits that might have driven the evolution of these complex behaviors.

In evolutionary biology, a key innovation, also known as an adaptive breakthrough or key adaptation, is a novel phenotypic trait that allows subsequent radiation and success of a taxonomic group. Typically they bring new abilities that allows the taxa to rapidly diversify and invade niches that were not previously available. The phenomenon helps to explain how some taxa are much more diverse and have many more species than their sister taxa. The term was first used in 1949 by Alden H. Miller who defined it as "key adjustments in the morphological and physiological mechanism which are essential to the origin of new major groups", although a broader, contemporary definition holds that "a key innovation is an evolutionary change in individual traits that is causally linked to an increased diversification rate in the resulting clade".

Eco-evolutionary dynamics refers to the reciprocal effects that ecology and evolution have on each other. The effects of ecology on evolutionary processes are commonly observed in studies, but the realization that evolutionary changes can be rapid led to the emergence of eco-evolutionary dynamics. The idea that evolutionary processes can occur quickly and on one timescale with ecological processes led scientists to begin studying the influence evolution has on ecology along with the affects ecology has on evolution. Recent studies have documented eco-evolutionary dynamics and feedback, which is the cyclic interaction between evolution and ecology, in natural and laboratory systems at different levels of biological organization, such as populations, communities, and ecosystems.

References

  1. 1 2 3 4 Parvinen, Kalle (1 December 2005). "Evolutionary suicide". Acta Biotheoretica. 53 (3): 241–264. doi:10.1007/s10441-005-2531-5. ISSN   1572-8358. PMID   16329010. S2CID   7109095.
  2. 1 2 Ibrahim, Ahmed (June 2014). "Invasive cancer as an empirical example of evolutionary suicide". Network Biology: 58–66. ProQuest   1520634036.
  3. Lehtinen, Sami O (1 February 2021). "Ecological and evolutionary consequences of predator-prey role reversal: Allee effect and catastrophic predator extinction". Journal of Theoretical Biology. 510: 110542. Bibcode:2021JThBi.51010542L. doi: 10.1016/j.jtbi.2020.110542 . ISSN   1095-8541. PMID   33242490.
  4. Dieckmann, Ulf; Ferrière, Régis (2004). "Adaptive Dynamics and Evolving Biodiversity". Evolutionary Conservation Biology. Cambridge Studies in Adaptive Dynamics. Cambridge University Press: 188–224. doi:10.1017/CBO9780511542022.015. ISBN   978-0-521-82700-3.

Further reading