Ewa Kubicka

Last updated

Ewa Maria Kubicka is a Polish mathematician interested in graph theory and actuarial science. [1] She is known for introducing the concept of the chromatic sum of a graph, the minimum possible sum when the vertices are labeled by natural numbers with no two adjacent vertices having equal labels. [2]

Kubicka studied mathematics at Wrocław University of Science and Technology beginning in 1974, and earned a master's degree there in 1979. She came to Western Michigan University for graduate study, earning both a master's degree in computer science and a Ph.D. in mathematics in 1989. [1] Her dissertation, The Chromatic Sum and Efficient Tree Algorithms, was supervised by Allen J. Schwenk. [3] She became an assistant professor at Emory University and then, in 1990, moved to the University of Louisville, where she has been a full professor since 2004. [1] At Louisville, she directs the actuarial program and is undergraduate advisor for mathematics. [4]

She is known for having an erdős number of one. [5]

Selected publications

Related Research Articles

<span class="mw-page-title-main">Bipartite graph</span> Graph divided into two independent sets

In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

<span class="mw-page-title-main">Interval graph</span> Intersection graph for intervals on the real number line

In graph theory, an interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect. It is the intersection graph of the intervals.

<span class="mw-page-title-main">Graph coloring</span> Methodic assignment of colors to elements of a graph

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.

In combinatorics, the Dinitz theorem is a statement about the extension of arrays to partial Latin squares, proposed in 1979 by Jeff Dinitz, and proved in 1994 by Fred Galvin.

<span class="mw-page-title-main">Degree (graph theory)</span> Number of edges touching a vertex in a graph

In graph theory, the degree of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex is denoted or . The maximum degree of a graph is denoted by , and is the maximum of 's vertices' degrees. The minimum degree of a graph is denoted by , and is the minimum of 's vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0.

In graph theory, an edge-graceful labeling is a type of graph labeling for simple, connected graphs in which no two distinct edges connect the same two distinct vertices and no edge connects a vertex to itself.

The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic.

<span class="mw-page-title-main">Unit distance graph</span> Geometric graph with unit edge lengths

In mathematics, particularly geometric graph theory, a unit distance graph is a graph formed from a collection of points in the Euclidean plane by connecting two points whenever the distance between them is exactly one. To distinguish these graphs from a broader definition that allows some non-adjacent pairs of vertices to be at distance one, they may also be called strict unit distance graphs or faithful unit distance graphs. As a hereditary family of graphs, they can be characterized by forbidden induced subgraphs. The unit distance graphs include the cactus graphs, the matchstick graphs and penny graphs, and the hypercube graphs. The generalized Petersen graphs are non-strict unit distance graphs.

<span class="mw-page-title-main">Triangle-free graph</span> Graph without triples of adjacent vertices

In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs.

In graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor.

Frances Foong Chu Yao is a Taiwanese-American mathematician and theoretical computer scientist. She is currently a Chair Professor at the Institute for Interdisciplinary Information Sciences (IIIS) of Tsinghua University. She was Chair Professor and Head of the Department of computer science at the City University of Hong Kong, where she is now an honorary professor.

<span class="mw-page-title-main">Greedy coloring</span> One-by-one assignment of colors to graph vertices

In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but they do not, in general, use the minimum number of colors possible.

In graph theory, an area of mathematics, an equitable coloring is an assignment of colors to the vertices of an undirected graph, in such a way that

Kenneth Brooks Reid, Jr. is a graph theorist and the founder faculty professor at California State University, San Marcos (CSUSM). He specializes in combinatorial mathematics. He is known for his work in tournaments, frequency partitions and aspects of voting theory. He is known on a disproof of a conjecture on tournaments by Erdős and Moser.

<span class="mw-page-title-main">Windmill graph</span> Graph family made by joining complete graphs at a universal node

In the mathematical field of graph theory, the windmill graphWd(k,n) is an undirected graph constructed for k ≥ 2 and n ≥ 2 by joining n copies of the complete graph Kk at a shared universal vertex. That is, it is a 1-clique-sum of these complete graphs.

<span class="mw-page-title-main">Cycle basis</span> Cycles in a graph that generate all cycles

In graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph. That is, it is a minimal set of cycles that allows every even-degree subgraph to be expressed as a symmetric difference of basis cycles.

<span class="mw-page-title-main">Degeneracy (graph theory)</span> Measurement of graph sparsity

In graph theory, a k-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most k: that is, some vertex in the subgraph touches k or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate. The degeneracy of a graph is a measure of how sparse it is, and is within a constant factor of other sparsity measures such as the arboricity of a graph.

Paul Allen Catlin was a mathematician, professor of mathematics who worked in graph theory and number theory. He wrote a significant paper on the series of chromatic numbers and Brooks' theorem, titled Hajós graph coloring conjecture: variations and counterexamples.

<span class="mw-page-title-main">Italo Jose Dejter</span>

Italo Jose Dejter is an Argentine-born American mathematician, a retired professor of mathematics and computer science from the University of Puerto Rico, and a researcher in algebraic topology, differential topology, graph theory, coding theory and combinatorial designs. He obtained a Licentiate degree in mathematics from University of Buenos Aires in 1967, arrived at Rutgers University in 1970 by means of a Guggenheim Fellowship and obtained a Ph.D. degree in mathematics in 1975 under the supervision of Professor Ted Petrie, with support of the National Science Foundation. He was a professor at the Federal University of Santa Catarina, Brazil, from 1977 to 1984, with grants from the National Council for Scientific and Technological Development, (CNPq).

<span class="mw-page-title-main">Sum coloring</span>

In graph theory, a sum coloring of a graph is a labeling of its vertices by positive integers, with no two adjacent vertices having equal labels, that minimizes the sum of the labels. The minimum sum that can be achieved is called the chromatic sum of the graph. Chromatic sums and sum coloring were introduced by Supowit in 1987 using non-graph-theoretic terminology, and first studied in graph theoretic terms by Ewa Kubicka in her 1989 doctoral thesis.

References

  1. 1 2 3 Curriculum vitae , retrieved 2018-02-17
  2. Małafiejski, Michał (2004), "Sum coloring of graphs", in Kubale, Marek (ed.), Graph Colorings, Contemporary Mathematics, vol. 352, Providence, RI: American Mathematical Society, pp. 55–65, doi: 10.1090/conm/352/06372 , MR   2076989
  3. Ewa Kubicka at the Mathematics Genealogy Project
  4. "Faculty", Mathematics Department People, University of Louisville, archived from the original on 2018-06-03, retrieved 2018-02-17
  5. Who's Important? A tale from Wikipedia , retrieved 2021-03-11