Excess chemical potential

Last updated

In thermodynamics, the excess chemical potential is defined as the difference between the chemical potential of a given species and that of an ideal gas under the same conditions (in particular, at the same pressure, temperature, and composition). [1] The chemical potential of a particle species is therefore given by an ideal part and an excess part.

Contents

Chemical potential of a pure fluid can be estimated by the Widom insertion method.

Derivation and Measurement

For a system of diameter and volume , at constant temperature , the classical canonical partition function

with a scaled coordinate, the free energy is given by:

Combining the above equation with the definition of chemical potential,

we get the chemical potential of a sufficiently large system from (and the fact that the smallest allowed change in the particle number is )

wherein the chemical potential of an ideal gas can be evaluated analytically. Now let's focus on since the potential energy of an -particle system can be separated into the potential energy of an -particle system and the potential of the excess particle interacting with the -particle system, that is,

and

Thus far we converted the excess chemical potential into an ensemble average, and the integral in the above equation can be sampled by the brute force Monte Carlo method.

The calculating of excess chemical potential is not limited to homogeneous systems, but has also been extended to inhomogeneous systems by the Widom insertion method, or other ensembles such as NPT and NVE.

See also

Apparent molar property

Related Research Articles

In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. This state results when the forward reaction proceeds at the same rate as the reverse reaction. The reaction rates of the forward and backward reactions are generally not zero, but they are equal. Thus, there are no net changes in the concentrations of the reactants and products. Such a state is known as dynamic equilibrium.

Fermi–Dirac statistics Statistical description for the behavior of fermions

Fermi-Dirac statistics is a type of quantum statistics that applies to the physics of a system consisting of many non-interacting, identical particles that obey the Pauli exclusion principle. A result is the Fermi–Dirac distribution of particles over energy states. It is named after Enrico Fermi and Paul Dirac, each of whom derived the distribution independently in 1926. Fermi–Dirac statistics is a part of the field of statistical mechanics and uses the principles of quantum mechanics.

Bose–Einstein statistics Description of the behavior of bosons

In quantum statistics, Bose–Einstein (B–E) statistics describes one of two possible ways in which a collection of non-interacting, indistinguishable particles may occupy a set of available discrete energy states at thermodynamic equilibrium. The aggregation of particles in the same state, which is a characteristic of particles obeying Bose–Einstein statistics, accounts for the cohesive streaming of laser light and the frictionless creeping of superfluid helium. The theory of this behaviour was developed (1924–25) by Satyendra Nath Bose, who recognized that a collection of identical and indistinguishable particles can be distributed in this way. The idea was later adopted and extended by Albert Einstein in collaboration with Bose.

Helmholtz free energy Thermodynamic potential

In thermodynamics, the Helmholtz free energy is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature (isothermal). The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which temperature is held constant. At constant temperature, the Helmholtz free energy is minimized at equilibrium.

In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.

Stable distribution Distribution of variables which satisfies a stability property under linear combinations

In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

In statistical mechanics, the grand canonical ensemble is the statistical ensemble that is used to represent the possible states of a mechanical system of particles that are in thermodynamic equilibrium with a reservoir. The system is said to be open in the sense that the system can exchange energy and particles with a reservoir, so that various possible states of the system can differ in both their total energy and total number of particles. The system's volume, shape, and other external coordinates are kept the same in all possible states of the system.

Virial coefficients appear as coefficients in the virial expansion of the pressure of a many-particle system in powers of the density, providing systematic corrections to the ideal gas law. They are characteristic of the interaction potential between the particles and in general depend on the temperature. The second virial coefficient depends only on the pair interaction between the particles, the third depends on 2- and non-additive 3-body interactions, and so on.

In mathematics, Grönwall's inequality allows one to bound a function that is known to satisfy a certain differential or integral inequality by the solution of the corresponding differential or integral equation. There are two forms of the lemma, a differential form and an integral form. For the latter there are several variants.

<span class="mw-page-title-main">Geodesics in general relativity</span> Generalization of straight line to a curved space time

In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.

The principle of detailed balance can be used in kinetic systems which are decomposed into elementary processes. It states that at equilibrium, each elementary process is in equilibrium with its reverse process.

The isothermal–isobaric ensemble is a statistical mechanical ensemble that maintains constant temperature and constant pressure applied. It is also called the -ensemble, where the number of particles is also kept as a constant. This ensemble plays an important role in chemistry as chemical reactions are usually carried out under constant pressure condition. The NPT ensemble is also useful for measuring the equation of state of model systems whose virial expansion for pressure cannot be evaluated, or systems near first-order phase transitions.

The characteristic state function or Massieu's potential in statistical mechanics refers to a particular relationship between the partition function of an ensemble.

The Gibbs adsorption isotherm for multicomponent systems is an equation used to relate the changes in concentration of a component in contact with a surface with changes in the surface tension, which results in a corresponding change in surface energy. For a binary system, the Gibbs adsorption equation in terms of surface excess is:

The Overlapping distribution method was introduced by Charles H. Bennett for estimating chemical potential.

A polymer field theory is a statistical field theory describing the statistical behavior of a neutral or charged polymer system. It can be derived by transforming the partition function from its standard many-dimensional integral representation over the particle degrees of freedom in a functional integral representation over an auxiliary field function, using either the Hubbard–Stratonovich transformation or the delta-functional transformation. Computer simulations based on polymer field theories have been shown to deliver useful results, for example to calculate the structures and properties of polymer solutions, polymer melts and thermoplastics.

The Widom insertion method is a statistical thermodynamic approach to the calculation of material and mixture properties. It is named for Benjamin Widom, who derived it in 1963. In general, there are two theoretical approaches to determining the statistical mechanical properties of materials. The first is the direct calculation of the overall partition function of the system, which directly yields the system free energy. The second approach, known as the Widom insertion method, instead derives from calculations centering on one molecule. The Widom insertion method directly yields the chemical potential of one component rather than the system free energy. This approach is most widely applied in molecular computer simulations but has also been applied in the development of analytical statistical mechanical models. The Widom insertion method can be understood as an application of the Jarzynski equality since it measures the excess free energy difference via the average work needed to perform, when changing the system from a state with N molecules to a state with N+1 molecules. Therefore it measures the excess chemical potential since , where .

For many paramagnetic materials, the magnetization of the material is directly proportional to an applied magnetic field, for sufficiently high temperatures and small fields. However, if the material is heated, this proportionality is reduced. For a fixed value of the field, the magnetic susceptibility is inversely proportional to temperature, that is

Classical nucleation theory (CNT) is the most common theoretical model used to quantitatively study the kinetics of nucleation.

In physics and mathematics, the Klein–Kramers equation or sometimes referred as Kramers–Chandrasekhar equation is a partial differential equation that describes the probability density function f of a Brownian particle in phase space (r, p).

References

  1. Frenkel, Daan; Smit, Berend (2001). Understanding Molecular Simulation : from algorithms to applications. San Diego, California: Academic Press. ISBN   0-12-267351-4.